flink cdc可以对ClickHouse进行操作吗?
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
Flink cdc connector 消费 Debezium 里的数据,经过处理再sink出来,给到Clickhouse,这个流程还是相对比较简单的。
package name.lijiaqi.cdc;
import com.alibaba.ververica.cdc.debezium.DebeziumDeserializationSchema;
import com.google.gson.Gson;
import com.google.gson.internal.LinkedTreeMap;
import io.debezium.data.Envelope;
import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import com.alibaba.ververica.cdc.connectors.mysql.MySQLSource;
import org.apache.flink.util.Collector;
import org.apache.kafka.connect.source.SourceRecord;
import org.apache.kafka.connect.data.Field;
import org.apache.kafka.connect.data.Schema;
import org.apache.kafka.connect.data.Struct;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.util.HashMap;
public class MySqlBinlogSourceExample {
    public static void main(String[] args) throws Exception {
        SourceFunction<String> sourceFunction = MySQLSource.<String>builder()
                .hostname("localhost")
                .port(3306)
                .databaseList("test")
                .username("flinkcdc")
                .password("dafei1288")
                .deserializer(new JsonDebeziumDeserializationSchema())
                .build();
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        // 添加 source
        env.addSource(sourceFunction)
        // 添加 sink
        .addSink(new ClickhouseSink());
        env.execute("mysql2clickhouse");
    }
    // 将cdc数据反序列化
    public static class JsonDebeziumDeserializationSchema implements DebeziumDeserializationSchema {
        @Override
        public void deserialize(SourceRecord sourceRecord, Collector collector) throws Exception {
            Gson jsstr = new Gson();
            HashMap<String, Object> hs = new HashMap<>();
            String topic = sourceRecord.topic();
            String[] split = topic.split("[.]");
            String database = split[1];
            String table = split[2];
            hs.put("database",database);
            hs.put("table",table);
            //获取操作类型
            Envelope.Operation operation = Envelope.operationFor(sourceRecord);
            //获取数据本身
            Struct struct = (Struct)sourceRecord.value();
            Struct after = struct.getStruct("after");
            if (after != null) {
                Schema schema = after.schema();
                HashMap<String, Object> afhs = new HashMap<>();
                for (Field field : schema.fields()) {
                    afhs.put(field.name(), after.get(field.name()));
                }
                hs.put("data",afhs);
            }
            String type = operation.toString().toLowerCase();
            if ("create".equals(type)) {
                type = "insert";
            }
            hs.put("type",type);
            collector.collect(jsstr.toJson(hs));
        }
        @Override
        public TypeInformation<String> getProducedType() {
            return BasicTypeInfo.STRING_TYPE_INFO;
        }
    }
    public static class ClickhouseSink extends RichSinkFunction<String>{
        Connection connection;
        PreparedStatement pstmt;
        private Connection getConnection() {
            Connection conn = null;
            try {
                Class.forName("ru.yandex.clickhouse.ClickHouseDriver");
                String url = "jdbc:clickhouse://localhost:8123/default";
                conn = DriverManager.getConnection(url,"default","dafei1288");
            } catch (Exception e) {
                e.printStackTrace();
            }
            return conn;
        }
        @Override
        public void open(Configuration parameters) throws Exception {
            super.open(parameters);
            connection = getConnection();
            String sql = "insert into sink_ch_test(id,name,description) values (?,?,?)";
            pstmt = connection.prepareStatement(sql);
        }
        // 每条记录插入时调用一次
        public void invoke(String value, Context context) throws Exception {
            //{"database":"test","data":{"name":"jacky","description":"fffff","id":8},"type":"insert","table":"test_cdc"}
            Gson t = new Gson();
            HashMap<String,Object> hs = t.fromJson(value,HashMap.class);
            String database = (String)hs.get("database");
            String table = (String)hs.get("table");
            String type = (String)hs.get("type");
            if("test".equals(database) && "test_cdc".equals(table)){
                if("insert".equals(type)){
                    System.out.println("insert => "+value);
                    LinkedTreeMap<String,Object> data = (LinkedTreeMap<String,Object>)hs.get("data");
                    String name = (String)data.get("name");
                    String description = (String)data.get("description");
                    Double id = (Double)data.get("id");
                    // 未前面的占位符赋值
                    pstmt.setInt(1, id.intValue());
                    pstmt.setString(2, name);
                    pstmt.setString(3, description);
                    pstmt.executeUpdate();
                }
            }
        }
        @Override
        public void close() throws Exception {
            super.close();
            if(pstmt != null) {
                pstmt.close();
            }
            if(connection != null) {
                connection.close();
            }
        }
    }
}
——参考链接。
实时计算Flink版是阿里云提供的全托管Serverless Flink云服务,基于 Apache Flink 构建的企业级、高性能实时大数据处理系统。提供全托管版 Flink 集群和引擎,提高作业开发运维效率。