整个加工链路是从mysql读binlog日志到flink里做关联,然后写到holo。源端mysql表A有20w条数据,但是不定期会全部delete掉,然后再写入20w数据。由于mysql数据会被采集到flink里做加工,所以源端删除20w再重写20w的操作,会导致在flink里也是这样。和另外一张5w的表B关联后形成100多w数据写入holo。如果源端全删全插一次,走一遍整体流程(从读binlog日志写入flink开始,到将最终结果写入holo)要好几分钟。这个时间貌似有点长,经排查时间主要是花在计算上了,如果只从源端同步20w数据到holo里只需要十几秒钟,计算过程花了较长时间。所以为什么flink计算100w量级的数据要花好几分钟?
Flink在处理大量数据时,可能会遇到一些性能瓶颈。以下是可能导致Flink计算100万量级数据花费较长时间的原因:
数据倾斜:如果某些key的数据量过大,可能会导致数据倾斜,从而影响整个任务的执行效率。在这种情况下,可以考虑使用KeyedStream或者进行窗口分区来减少数据倾斜的影响。
网络延迟:Flink是基于分布式计算的,数据需要在各个节点之间传输。如果网络延迟较高,可能会导致数据传输速度变慢,从而影响整个任务的执行效率。可以尝试优化网络环境,或者调整Flink的配置参数来减少网络传输的影响。
资源分配不足:如果Flink集群的资源分配不足,可能会导致任务执行缓慢。可以尝试增加Flink集群的资源,例如增加CPU、内存等。
算法复杂度:如果Flink中的算法实现较为复杂,可能会导致计算速度较慢。可以尝试优化算法实现,或者使用更高效的算法来提高计算速度。
系统其他因素:除了上述原因外,还可能存在其他因素影响Flink的计算速度,例如操作系统、硬件设备等。可以尝试排查这些因素,以找到导致计算速度较慢的原因。
①资源分配不足:core数、内存大小不足以支撑大规模数据计算,那么就会导致处理速度变慢。
②网络传输:在Flink处理过程中,可能会涉及到数据在不同节点之间的传输,如果网络条件不佳,也会影响到数据处理的速度。
③数据倾斜:如果数据分布不均匀,导致某些节点上的数据量过大,而其他节点上的数据量较少,这种数据倾斜现象会使得整体计算效率降低。
④状态管理:Flink在处理数据时会维护一定的状态信息,如果状态大小过大或者状态更新频繁,也会增加处理时间。
⑤Flink 处理CDC 增量数据只能单并发,不能多并发执行,这块在直接的数据同步 Hologres 中是一致的吗。此回答整理自钉群“实时计算Flink产品交流群”
Flink处理100万级别的数据需要几分钟的原因可能有以下几点:
资源限制:
并行度设置:
数据倾斜:
GROUP BY
等操作时,要避免数据倾斜。网络延迟:
算法效率:
状态存储:
检查点与保存点:
外部系统集成:
日志级别:
调优参数:
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
实时计算Flink版是阿里云提供的全托管Serverless Flink云服务,基于 Apache Flink 构建的企业级、高性能实时大数据处理系统。提供全托管版 Flink 集群和引擎,提高作业开发运维效率。