开发者社区 > 大数据与机器学习 > 大数据计算 MaxCompute > 正文

请问下大数据计算MaxCompute:有哪些比较好的优化方案呢?

请问下大数据计算MaxCompute:数据倾斜导致JOB运行时间过长导致系统会自动kill掉job,有哪些比较好的优化方案呢?9e048bad7825cb1d00a954f8bd2ebd02.jpg

展开
收起
真的很搞笑 2023-11-30 11:53:57 55 0
2 条回答
写回答
取消 提交回答
  • 面对过去,不要迷离;面对未来,不必彷徨;活在今天,你只要把自己完全展示给别人看。

    在大数据计算中,数据倾斜是指数据分布不均,在执行shuffle操作时导致某些分区的数据量远大于其他分区。这会导致处理速度变慢,从而使得整个Job的运行时间过长,甚至可能导致系统自动kill掉job。以下是一些优化数据倾斜问题的常见策略:

    1. 重新设计键(Key)

      • 避免使用高基数列作为Shuffle Key,以减少热点。
      • 如果可能的话,尝试找到一个更均匀分布的替代键。
    2. 自定义分区器

      • 使用自定义的分区函数来平衡数据分配,确保每个分区接收的数据量大致相同。
      • 根据业务逻辑或数据特征进行分区,比如通过哈希或者取模等方法。
    3. 调整并行度

      • 调整作业的并行度,增加worker的数量,将任务分解为更多小任务。
      • 对于Spark,可以设置spark.sql.shuffle.partitions参数,控制分区数量。
    4. 聚合预处理

      • 在进行全局聚合之前,先进行局部聚合,减小需要shuffle的数据量。
    5. 数据重分布

      • 在关键步骤前对数据进行重分布,使其更均匀地分布在集群节点上。
    6. 使用Combiner

      • Combiner可以在map阶段合并部分结果,减轻reduce端的压力。
    7. 动态负载均衡

      • 利用系统的动态负载均衡机制,让系统自动重新调度任务以缓解热点。
    8. 利用广播变量和累加器

      • 对于较小的数据集,使用广播变量可以避免不必要的网络传输。
      • 累加器可以帮助统计信息汇总而无需大量的shuffle。
    9. 代码优化

      • 优化算法和实现,例如尽量避免使用全局排序等昂贵的操作。
    2023-11-30 13:59:26
    赞同 展开评论 打赏

MaxCompute(原ODPS)是一项面向分析的大数据计算服务,它以Serverless架构提供快速、全托管的在线数据仓库服务,消除传统数据平台在资源扩展性和弹性方面的限制,最小化用户运维投入,使您经济并高效的分析处理海量数据。

相关产品

  • 云原生大数据计算服务 MaxCompute
  • 热门讨论

    热门文章

    相关电子书

    更多
    Data+AI时代大数据平台应该如何建设 立即下载
    大数据AI一体化的解读 立即下载
    极氪大数据 Serverless 应用实践 立即下载