Flink CDC有遇到过kafka实时同步hudi出现反压的情况吗?
Flink CDC在处理Kafka实时同步时,可能会遇到反压(BackPressure)的情况。反压通常发生在系统接收数据的速率远高于它处理数据的速率时,导致数据处理过慢,上游的operator的backpressure升高。
在Flink中,如果一个Task因为反压导致处理速度降低了,它会卡在向LocalBufferPool申请内存块上。Flink的机制能够自检测到被阻塞的Operator,然后自适应地降低源头或上游数据的发送速率,从而维持整个系统的稳定。
因此,当Kafka实时同步Hudi出现反压的情况时,Flink CDC能够自动检测并应对。同时,可以通过增加并发或者其它解决方法来缓解反压问题。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
实时计算Flink版是阿里云提供的全托管Serverless Flink云服务,基于 Apache Flink 构建的企业级、高性能实时大数据处理系统。提供全托管版 Flink 集群和引擎,提高作业开发运维效率。