开发者社区 > 大数据与机器学习 > 人工智能平台PAI > 正文

机器学习PAI-EAS 部署Pytorch模型失败怎么办?

机器学习PAI-EAS 部署Pytorch模型失败怎么办?

展开
收起
真的很搞笑 2023-11-06 12:17:13 76 0
1 条回答
写回答
取消 提交回答
  • 面对过去,不要迷离;面对未来,不必彷徨;活在今天,你只要把自己完全展示给别人看。

    如果您的机器学习PAI-EAS部署Pytorch模型失败了,可以尝试以下几种方法:

    1. 检查模型文件:确保只上传了一个模型文件,没有重复或冗余的文件;删除任何重复或冗余的模型文件;确保文件命名唯一。
    2. 检查服务配置:确保您的服务资源配置(如内存、CPU、GPU等)足够满足模型的需求;检查网络设置,确保服务所在的VPC和其他服务可以互相通信。
    3. 查看日志:在EAS的服务详情页中查看日志,查看日志中是否有异常信息;尝试使用调试模式,以便更好地定位问题。
    2023-11-06 13:26:46
    赞同 展开评论 打赏

人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。

相关产品

  • 人工智能平台 PAI
  • 热门讨论

    热门文章

    相关电子书

    更多
    微博机器学习平台架构和实践 立即下载
    机器学习及人机交互实战 立即下载
    大数据与机器学习支撑的个性化大屏 立即下载