我在使用机器学习PAI EPL的多卡数据并行模型,batch=256吃满了单张显卡的16G显存。我想继续加大batch size,请问是要改成auto_parallel吗?
如果你的单张显卡的显存已经被一个 batch size 为 256 的模型所完全使用,并且想要进一步增加 batch size,以利用多卡数据并行来训练模型,那么可以考虑使用自动并行(auto_parallel)来实现。
在机器学习 PAI 中,auto_parallel 是一种自动并行策略,它能够自动将计算图划分为多个设备(例如多个 GPU),并在这些设备之间进行数据并行。通过 auto_parallel,你可以有效地利用多个显卡来加速训练过程,并可以增加 batch size。
要使用 auto_parallel,你可以按照以下步骤进行操作:
导入必要的 TensorFlow 模块:
import tensorflow as tf
设置自动并行策略:
# 设置自动并行策略
strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy(
tf.distribute.experimental.CollectiveCommunication.NCCL
)
这里使用了 MultiWorkerMirroredStrategy
来实现数据并行。NCCL
是一种高效的分布式通信库,可加速多 GPU 之间的数据传输。
在模型构建之前设置分布式策略:
# 设置分布式策略
with strategy.scope():
# 构建模型
在这个 with
上下文管理器中,你可以构建和定义你的模型。
通过以上步骤,你将设置好了自动并行策略,并确保在构建模型之前设置了合适的分布式策略。这样 TensorFlow 就能够自动进行数据并行,并将计算图划分到多个设备上以支持更大的 batch size。
请注意,使用自动并行时,需要确保你的机器有足够的显卡和显存来容纳增加后的 batch size。此外,在 auto_parallel 中进行训练时,可能需要根据实际情况微调一些超参数,如学习率、梯度累积等,以获得最佳的训练性能和效果。
最后,值得一提的是,auto_parallel 可能并不是适用于所有情况的最佳解决方案,具体的选择还需要结合你的硬件资源、模型复杂度和训练目标等因素进行考虑。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。