如上
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
目前的 AI 生成的都还是比较有 AI 风格的,因为它毕竟是利用算法生成的图片,所以在图片中多多少少都会有一些规律可循,比如:线条、颜色等。
目前的机器学习,还不能让AI对绘画的细节做很好的处理。比如下面的图,乍一看觉得还挺好,但是仔细看他们的手是畸形的。
除了细节之外,还有就是是否有类似风格的图片,并且大批量的,因为AI生成图片在确定风格参数后,微调一下就能批量生成同一种风格的图片,这些图片很相似。而这种批量创作的效率是人所不能及的。
要判断一张画是不是由AI生成的,一般需要结合以下几个方面进行综合判断:
画风特征:AI生成的画通常有一些独特的风格和特征,比如线条比较平滑、色彩比较规则等。如果一幅画的风格符合这些特征,就可能是由AI生成的。
制作时间:如果一张画的制作时间非常短,比如只需要几秒钟或者几分钟,那么很有可能是由AI生成的。因为AI可以通过预训练的模型来快速生成画作。
原始数据:如果能够查看一张画的原始数据,就可以看出是不是由AI生成的。因为AI生成的画通常是由大量数字和代码组成的,而手绘画则是由笔触和颜料组成的。
画作质量:虽然AI生成的画越来越逼真,但在某些细节上仍然难以达到人类手绘的水平。如果一张画在细节上有一些缺陷或者瑕疵,就可能是由AI生成的。
多元数据治理方法: 数据分类与标准化: 对数据进行分类,制定统一的数据标准和格式,确保数据的一致性和可比性。 元数据管理: 利用元数据管理工具来记录数据的属性、来源、使用情况等信息,便于数据的检索和分析。 数据质量管理: 实施数据质量控制流程,包括数据校验、清洗、去重等,确保数据的准确性和可靠性。 数据安全与合规性: 遵守数据保护法规,实施数据加密、访问控制、审计日志等安全措施。 数据目录和...
之前做过一段时间的数据分析工作,最大的痛点就是 SQL 学习成本高,尤其是业务部门的人想自己做分析的时候,经常被语法卡住。后来尝试了 MCP 的方案,感觉体验还不错,能直接把自然语言需求转成 SQL 并执行,分析结果还能一键生成图表,这样从数据接入到可视化几乎不用切换工具,效率确实高了很多。建议后续能在图表交互上再增强一些,比如支持更灵活的筛选,这样业务人员用起来会更贴合实际场景。
体验了阿里云 Kimi K2 方案,整体感受很惊艳。我选了 MaaS 调用方式,零门槛操作,5 分钟就完成配置,还能免费体验百万 Token,对想快速试错的开发者很友好。模型推理能力超预期,复杂逻辑题都能条理清晰作答,工具调用也很顺畅。界面交互简洁,不用写代码,可视化操作降低了使用难度。不过若需高并发场景,后续可试试 PAI 部署的竞价实例,能大幅降本。这么强的万亿参数模型,易用性还这么高,...
传统的智能应用开发需要花费的工时比较长,现在我开发的模式基本上是使用dify快速搭建一个mvp,如果效果能够达到预期才去进行开发,能够节约出来很多工时,有一些需求使用的AI不一定能够达到预期的效果,用dify的时候就可以快速验证
在数据库运维领域,AI技术正通过智能决策、自动化执行和精准预测重塑传统运维模式。以下结合最新行业实践和技术突破,从核心场景、技术方案到落地路径进行系统解析: 一、核心场景:AI如何突破传统运维瓶颈 1. 智能监控与异常感知 动态基线学习:通过LSTM等时序模型分析历史指标(如CPU、IOPS),建立动态基线。例如,阿里云PolarDB结合内核级实时数据流,可识别CPU利用率在非高峰时段的异常...