传统的机器学习链路里数据的传输、特征的计算以及模型的训练,都是离线处理的,存在两个大的问题:第一个是时效性低,模型和特征的更新周期基本是 t+1 天或者 t+1 小时,在追求时效性的场景下体验并不好。第二个是计算训练的效率很低,必须等天或小时的分区数据全部准备好之后才能开始特征计算和训练。全量分区数据导致计算和训练的压力大。
以上内容摘自《Apache Flink 案例集(2022版)》电子书,点击https://developer.aliyun.com/ebook/download/7718 可下载完整版
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
实时计算Flink版是阿里云提供的全托管Serverless Flink云服务,基于 Apache Flink 构建的企业级、高性能实时大数据处理系统。提供全托管版 Flink 集群和引擎,提高作业开发运维效率。