大佬们,join state过大的问题,怎么解决啊?我看到文档上可以通过设置table.exec.state.ttl,或者使用窗口join,但是我们的场景下table.exec.state.ttl需要设置为100多天,没法搞。。。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
当 Spark SQL 中的 join state 过大时,可能会导致 Spark 作业的性能下降甚至失败。Spark SQL 中的 join state 是指在执行 join 操作时,Spark 会将 join 结果保存在内存或磁盘中,以便后续使用。如果 join state 过大,可能会导致内存和磁盘资源的耗尽,进而导致 Spark 作业的失败。
以下是一些解决 Spark SQL join state 过大的方法:
增加 Spark Executor 内存。可以通过增加 Spark Executor 的内存来减少 join state 对内存的占用。您可以通过设置 spark.executor.memory 参数来增加 Executor 的内存大小。需要注意的是,增加内存可能会导致 Executor 数量的减少,进而影响到作业的并行度和性能。
调整 Spark SQL 的 join 策略。Spark SQL 中有多种 join 策略,例如 Broadcast Join、Shuffle Hash Join、Shuffle Sort Merge Join 等。不同的 join 策略对 join state 的占用有所不同。您可以根据实际情况,选择适合的 join 策略来减少 join state 对内存和磁盘的占用。
增加 Spark SQL 的 shuffle 分区数。Spark SQL 中的 shuffle 操作(如 Shuffle Sort Merge Join)会将数据进行重新分区,以便于后续的计算和存储。您可以通过增加 shuffle 分区数来减少每个分区的数据量,从而减少 join state 对内存和磁盘的占用。您可以通过设置 spark.sql.shuffle.partitions 参数来增加 shuffle 分区数。
使用外部存储系统。如果您的 join state 过大,可能需要使用外部存储系统(如 Hadoop HDFS)来保存 join 结果。您可以通过设置 spark.sql.sources.useV1SourceList 参数来指定外部存储系统的使用方式。
实时计算Flink版是阿里云提供的全托管Serverless Flink云服务,基于 Apache Flink 构建的企业级、高性能实时大数据处理系统。提供全托管版 Flink 集群和引擎,提高作业开发运维效率。