开发者社区 > 大数据与机器学习 > 开源大数据平台 E-MapReduce > 正文

请问为什么不能够在DF的foreachPartition方法调用的函数方法中引用redis模块呢?

我想请问下各位大佬。 # 为什么不能够在Dataframe的foreachPartition()的方法调用的函数方法中引用redis模块呢? # 应该怎样解决这个问题呢? #我使用的编程环境是jupyter。具体的操作场景为希望能够通过使用dataframe的foreachPartition方法和自定义的函数将用户DF和广告DF 的信息录入到redis数据库中去。

下面是我的代码:

feature_cols_from_ad=[
    "price"
]
feature_cols_from_user=[
    "cms_groupid_id",
    "final_gender_code",
    "age_level",
    "shopping_level",
    "occupation",
    "pvalue_level",
    "new_user_class_level"
]


def foreachPartition(partition):
    import redis
    import json
    client01=redis.StrictRedis(host="192.168.56.5",port=6379,db=10)
    for r in partition:
        data={
            "price":r.price
        }
        client01.hset("ad_features",r.adgroudId,json.dumps(data))
        




def foreachPartition2(partition):
    import redis
    import json
    client02=redis.StrictRedis(host="192.168.56.5",port=6379,db=10)
    for r in partition:
        data={
            "cms_group_id":r.cms_group_id,
            "final_gender_code":r.final_gender_code,
            "age_level":r.age_level,
            "shopping_level":r.shopping_level,
            "occupation":r.occupation,
            "pvalue_level":r.pvalue_level,
            "new_user_class_level":r.new_user_class_level
        }
        client02.hset("user_features",r.userId,json.dumps(data))

ad_feature_df.foreachPartition(foreachPartition)
user_profile_df.foreachPartition(foreachPartition2)


下面是具体的报错信息:

22/06/02 21:37:52 WARN TaskSetManager: Lost task 1.0 in stage 376.0 (TID 1054) (192.168.56.6 executor 0): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/usr/sft/spark/python/lib/pyspark.zip/pyspark/worker.py", line 619, in main
    process()
  File "/usr/sft/spark/python/lib/pyspark.zip/pyspark/worker.py", line 609, in process
    out_iter = func(split_index, iterator)
  File "/usr/local/python3/lib/python3.7/site-packages/pyspark/rdd.py", line 2918, in pipeline_func
  File "/usr/local/python3/lib/python3.7/site-packages/pyspark/rdd.py", line 2918, in pipeline_func
  File "/usr/local/python3/lib/python3.7/site-packages/pyspark/rdd.py", line 2918, in pipeline_func
  File "/usr/local/python3/lib/python3.7/site-packages/pyspark/rdd.py", line 417, in func
  File "/usr/local/python3/lib/python3.7/site-packages/pyspark/rdd.py", line 933, in func
  File "/tmp/ipykernel_2896/4051490123.py", line 17, in foreachPartition
ModuleNotFoundError: No module named 'redis'

	at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:555)
	at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:713)
	at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:695)
	at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:508)
	at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
	at scala.collection.Iterator.foreach(Iterator.scala:943)
	at scala.collection.Iterator.foreach$(Iterator.scala:943)
	at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
	at scala.collection.generic.Growable.$plus$plus$eq(Growable.scala:62)
	at scala.collection.generic.Growable.$plus$plus$eq$(Growable.scala:53)
	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:105)
	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:49)
	at scala.collection.TraversableOnce.to(TraversableOnce.scala:366)
	at scala.collection.TraversableOnce.to$(TraversableOnce.scala:364)
	at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
	at scala.collection.TraversableOnce.toBuffer(TraversableOnce.scala:358)
	at scala.collection.TraversableOnce.toBuffer$(TraversableOnce.scala:358)
	at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
	at scala.collection.TraversableOnce.toArray(TraversableOnce.scala:345)
	at scala.collection.TraversableOnce.toArray$(TraversableOnce.scala:339)
	at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
	at org.apache.spark.rdd.RDD.$anonfun$collect$2(RDD.scala:1030)
	at org.apache.spark.SparkContext.$anonfun$runJob$5(SparkContext.scala:2254)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
	at org.apache.spark.scheduler.Task.run(Task.scala:131)
	at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:506)
	at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1462)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:509)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	at java.lang.Thread.run(Thread.java:750)

22/06/02 21:37:52 ERROR TaskSetManager: Task 0 in stage 376.0 failed 4 times; aborting job
22/06/02 21:37:52 WARN TaskSetManager: Lost task 1.3 in stage 376.0 (TID 1060) (192.168.56.6 executor 0): TaskKilled (Stage cancelled)
---------------------------------------------------------------------------
Py4JJavaError                             Traceback (most recent call last)
/tmp/ipykernel_2896/2204389708.py in <module>
----> 1 ad_feature_df.foreachPartition(foreachPartition)
      2 user_profile_df.foreachPartition(foreachPartition2)

/usr/local/python3/lib/python3.7/site-packages/pyspark/sql/dataframe.py in foreachPartition(self, f)
    791         >>> df.foreachPartition(f)
    792         """
--> 793         self.rdd.foreachPartition(f)
    794 
    795     def cache(self):

/usr/local/python3/lib/python3.7/site-packages/pyspark/rdd.py in foreachPartition(self, f)
    936             except TypeError:
    937                 return iter([])
--> 938         self.mapPartitions(func).count()  # Force evaluation
    939 
    940     def collect(self):

/usr/local/python3/lib/python3.7/site-packages/pyspark/rdd.py in count(self)
   1235         3
   1236         """
-> 1237         return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
   1238 
   1239     def stats(self):

/usr/local/python3/lib/python3.7/site-packages/pyspark/rdd.py in sum(self)
   1224         6.0
   1225         """
-> 1226         return self.mapPartitions(lambda x: [sum(x)]).fold(0, operator.add)
   1227 
   1228     def count(self):

/usr/local/python3/lib/python3.7/site-packages/pyspark/rdd.py in fold(self, zeroValue, op)
   1078         # zeroValue provided to each partition is unique from the one provided
   1079         # to the final reduce call
-> 1080         vals = self.mapPartitions(func).collect()
   1081         return reduce(op, vals, zeroValue)
   1082 

/usr/local/python3/lib/python3.7/site-packages/pyspark/rdd.py in collect(self)
    948         """
    949         with SCCallSiteSync(self.context) as css:
--> 950             sock_info = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
    951         return list(_load_from_socket(sock_info, self._jrdd_deserializer))
    952 

/usr/local/python3/lib/python3.7/site-packages/py4j/java_gateway.py in __call__(self, *args)
   1320         answer = self.gateway_client.send_command(command)
   1321         return_value = get_return_value(
-> 1322             answer, self.gateway_client, self.target_id, self.name)
   1323 
   1324         for temp_arg in temp_args:

/usr/local/python3/lib/python3.7/site-packages/pyspark/sql/utils.py in deco(*a, **kw)
    109     def deco(*a, **kw):
    110         try:
--> 111             return f(*a, **kw)
    112         except py4j.protocol.Py4JJavaError as e:
    113             converted = convert_exception(e.java_exception)

/usr/local/python3/lib/python3.7/site-packages/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
    326                 raise Py4JJavaError(
    327                     "An error occurred while calling {0}{1}{2}.\n".
--> 328                     format(target_id, ".", name), value)
    329             else:
    330                 raise Py4JError(

Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 376.0 failed 4 times, most recent failure: Lost task 0.3 in stage 376.0 (TID 1059) (192.168.56.6 executor 0): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/usr/sft/spark/python/lib/pyspark.zip/pyspark/worker.py", line 619, in main
    process()
  File "/usr/sft/spark/python/lib/pyspark.zip/pyspark/worker.py", line 609, in process
    out_iter = func(split_index, iterator)
  File "/usr/local/python3/lib/python3.7/site-packages/pyspark/rdd.py", line 2918, in pipeline_func
  File "/usr/local/python3/lib/python3.7/site-packages/pyspark/rdd.py", line 2918, in pipeline_func
  File "/usr/local/python3/lib/python3.7/site-packages/pyspark/rdd.py", line 2918, in pipeline_func
  File "/usr/local/python3/lib/python3.7/site-packages/pyspark/rdd.py", line 417, in func
  File "/usr/local/python3/lib/python3.7/site-packages/pyspark/rdd.py", line 933, in func
  File "/tmp/ipykernel_2896/4051490123.py", line 17, in foreachPartition
ModuleNotFoundError: No module named 'redis'

	at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:555)
	at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:713)
	at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:695)
	at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:508)
	at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
	at scala.collection.Iterator.foreach(Iterator.scala:943)
	at scala.collection.Iterator.foreach$(Iterator.scala:943)
	at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
	at scala.collection.generic.Growable.$plus$plus$eq(Growable.scala:62)
	at scala.collection.generic.Growable.$plus$plus$eq$(Growable.scala:53)
	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:105)
	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:49)
	at scala.collection.TraversableOnce.to(TraversableOnce.scala:366)
	at scala.collection.TraversableOnce.to$(TraversableOnce.scala:364)
	at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
	at scala.collection.TraversableOnce.toBuffer(TraversableOnce.scala:358)
	at scala.collection.TraversableOnce.toBuffer$(TraversableOnce.scala:358)
	at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
	at scala.collection.TraversableOnce.toArray(TraversableOnce.scala:345)
	at scala.collection.TraversableOnce.toArray$(TraversableOnce.scala:339)
	at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
	at org.apache.spark.rdd.RDD.$anonfun$collect$2(RDD.scala:1030)
	at org.apache.spark.SparkContext.$anonfun$runJob$5(SparkContext.scala:2254)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
	at org.apache.spark.scheduler.Task.run(Task.scala:131)
	at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:506)
	at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1462)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:509)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	at java.lang.Thread.run(Thread.java:750)

Driver stacktrace:
	at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2454)
	at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2403)
	at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2402)
	at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
	at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
	at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
	at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2402)
	at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1160)
	at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1160)
	at scala.Option.foreach(Option.scala:407)
	at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1160)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2642)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2584)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2573)
	at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
	at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:938)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:2214)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:2235)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:2254)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:2279)
	at org.apache.spark.rdd.RDD.$anonfun$collect$1(RDD.scala:1030)
	at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
	at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
	at org.apache.spark.rdd.RDD.withScope(RDD.scala:414)
	at org.apache.spark.rdd.RDD.collect(RDD.scala:1029)
	at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:180)
	at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
	at sun.reflect.GeneratedMethodAccessor184.invoke(Unknown Source)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:498)
	at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
	at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
	at py4j.Gateway.invoke(Gateway.java:282)
	at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
	at py4j.commands.CallCommand.execute(CallCommand.java:79)
	at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
	at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
	at java.lang.Thread.run(Thread.java:750)
Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/usr/sft/spark/python/lib/pyspark.zip/pyspark/worker.py", line 619, in main
    process()
  File "/usr/sft/spark/python/lib/pyspark.zip/pyspark/worker.py", line 609, in process
    out_iter = func(split_index, iterator)
  File "/usr/local/python3/lib/python3.7/site-packages/pyspark/rdd.py", line 2918, in pipeline_func
  File "/usr/local/python3/lib/python3.7/site-packages/pyspark/rdd.py", line 2918, in pipeline_func
  File "/usr/local/python3/lib/python3.7/site-packages/pyspark/rdd.py", line 2918, in pipeline_func
  File "/usr/local/python3/lib/python3.7/site-packages/pyspark/rdd.py", line 417, in func
  File "/usr/local/python3/lib/python3.7/site-packages/pyspark/rdd.py", line 933, in func
  File "/tmp/ipykernel_2896/4051490123.py", line 17, in foreachPartition
ModuleNotFoundError: No module named 'redis'

	at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:555)
	at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:713)
	at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:695)
	at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:508)
	at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
	at scala.collection.Iterator.foreach(Iterator.scala:943)
	at scala.collection.Iterator.foreach$(Iterator.scala:943)
	at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
	at scala.collection.generic.Growable.$plus$plus$eq(Growable.scala:62)
	at scala.collection.generic.Growable.$plus$plus$eq$(Growable.scala:53)
	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:105)
	at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:49)
	at scala.collection.TraversableOnce.to(TraversableOnce.scala:366)
	at scala.collection.TraversableOnce.to$(TraversableOnce.scala:364)
	at org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
	at scala.collection.TraversableOnce.toBuffer(TraversableOnce.scala:358)
	at scala.collection.TraversableOnce.toBuffer$(TraversableOnce.scala:358)
	at org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
	at scala.collection.TraversableOnce.toArray(TraversableOnce.scala:345)
	at scala.collection.TraversableOnce.toArray$(TraversableOnce.scala:339)
	at org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
	at org.apache.spark.rdd.RDD.$anonfun$collect$2(RDD.scala:1030)
	at org.apache.spark.SparkContext.$anonfun$runJob$5(SparkContext.scala:2254)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
	at org.apache.spark.scheduler.Task.run(Task.scala:131)
	at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:506)
	at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1462)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:509)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	... 1 more

展开
收起
游客5ojq2qh7rcjcs 2022-06-02 23:50:56 1993 0
0 条回答
写回答
取消 提交回答

阿里云EMR是云原生开源大数据平台,为客户提供简单易集成的Hadoop、Hive、Spark、Flink、Presto、ClickHouse、StarRocks、Delta、Hudi等开源大数据计算和存储引擎,计算资源可以根据业务的需要调整。EMR可以部署在阿里云公有云的ECS和ACK平台。

相关电子书

更多
Redis集群演化的心路历程——从2.x到3.0时代 立即下载
微博的Redis定制之路 立即下载
云数据库Redis版的开源之路 立即下载