Tablestore 提供兼容 HBase 的宽表引擎,以及能力和性能都优于 Elasticsearch 的索引引擎,它的核心能力包括哪些?
多模型:提供抽象模型 WideColumn 宽表模型,以及具象模型 Timeline 消息模型以及 Timestream 时序模型。具象模型更适合应用与应用系统,而具象模型是围绕具体场景的数据架构而设计和深度优化。 多元化索引:提供二级索引和多元索引,不同查询加速场景提供不同的索引实现,其中多元索引能提供全文检索、地理位置检索以及灵活的多条件组合查询,功能和性能都优于 Elasticsearch。 存储计算分离架构:提供计算和存储侧的灵活扩展能力,不仅体现在架构上,也体现在产品形态上。用户可以单独为存储付费或为计算付费,提供更灵活的资源组合,获得最低的成本。 Serverless 服务:纯 Serverless 服务,提供完全免运维的服务,全球部署、即开即用。零成本即可接入,最大可扩展至千万 TPS 服务能力以及 PB 级存储。 计算生态:能够与开源计算引擎对接,融合流批一体计算能力。同时自身提供 CDC 能力,让数据能够更灵活的进行流转。 CDC 技术:Tablestore 的 CDC 技术名为 Tunnel Service,支持全量和增量的实时数据订阅,并且能无缝对接 Flink 流计算引擎来实现表内数据的实时流计算。 SQL 支持:提供 SQL 支持,大大降低使用和应用开发门槛。
海量订单交易记录的存储,更大的数据管理功能。 时序数据:时序数据解决的是对包含4W(Who, When, Where, What)元素数据的抽象,数据量相对比较庞大,需要存储引擎支持对时间线的索引以及对时间线的时间范围查询。 时空数据:时空数据是基于时序数据加上了空间的维度,同时可能没有时序数据的连续性。总的来说,特征和时序数据比较类似。 消息数据:消息数据广泛存在于消息系统,例如即时通讯消息系统或者Feeds流消息系统内。消息的存储和传递更像是消息队列模型,但是要求消息队列能够提供海量级消息存储以及海量Topic,这是传统专业级消息队列产品所无法支撑的。 元数据:这类元数据属于非关系类元数据,例如历史订单数据、图片智能标签元数据点。特点是量级比较大,每个数据存在的属性比较多且是稀疏的,要求存储能够支持对各种维度属性的条件过滤,对查询可用性有比较高的要求。 大数据:这是Bigtable模型所对应的最主要数据场景,特点是数据量极其庞大,需要很好的支持批量计算。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。