数据按时间顺序产生,一定带有时间戳,海量的物联网设备或者被监控到应用程序,按固定的周期或特定条件触发,持续不断的产生新的时序数据。 数据是相对结构化的,一个设备或应用,产生的指标一般以数值类型(绝大部分)、字符类型为主,并且在运行过程中,指标的数量相对固定,只有模型变更、业务升级时才会新增/减少/变更指标。 写多读少,极少有更新操作,无需事务能力支持,在互联网应用场景里,数据写入后,往往会被多次访问,比如典型的社交、电商场景都是如此;而在物联网、APM 场景,数据产生存储后,往往在需要做数据运营分析、监控报表、问题排查时才会去读取访问。 按时间段批量访问数据,用户主要关注同一个或同一类类设备在一段时间内的访问趋势,比如某个智能空调在过去1小时的平均温度,某个集群所有实例总的访问 QPS 等,需要支持对连续的时间段数据进行常用的计算,比如求和、计数、最大值、最小值、平均值等其他数学函数计算。 近期数据的访问远高于历史数据,访问规律明显,历史数据的价值随时间不断降低,为节省成本,通常只需要保存最近一段时间如三个月、半年的数据,需要支持高效的数据 TTL 机制,能自动批量删除历史数据,最小化对正常写入的影响。 数据存储量大,冷热特征明显,因此对存储成本要求比较高,需要有针对性的存储解决方案。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。