对于最小二乘法,当从模型中选择n个样本观察值时,参数的合理性要求就是让模型更好地拟合这个样本数据,就是让观察值和估计值之间的误差更小。而对于最大似然函数,当从模型中选择n个样本观察值时,合理的参数估计就是让从模型抽取这n个样本观察值的概率最大化。这是从不同的原理出发的两种参数估计法。
在最大似然法中,通过选择参数,让已知数据在某种意义上最有可能出现,这个某种意义上指的就是最大似然估计,而似然函数指的就是数据的概率分布函数。和最小二乘法不同的是,最大似然法需要提前知道这个数据的分布函数,这在实践中是很难的。一般我们要求线性回归的误差满足均值为0的正态分布,在这种情况下,最大似然函数和最小二乘法相同。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。