当估计值的数学期望等于参数真值时,参数估计就是无偏估计。当估计值是数据的线性函数时,参数估计就是线性估计。当估计值的均方差最小时,参数估计为一致最小均方误差估计。若线性估计又是一致最小均方误差估计,则称为最优线性无偏估计。如果无偏估计值的方差达到克拉默-尧不等式的下界,则称为有效估计值。若 ,则称 为一致性估计值。在一定条件下,最小二乘估计是最优线性无偏估计,它的估计值是有效估计,而且是一致性估计。极大似然估计在一定条件下渐近有效,而且是一致的。
寻求最小二乘估计和极大似然估计的常用方法是将准则对参数θ求导数,计算梯度,因而要使用最优化的方法:梯度法、变尺度法、单纯形搜索法、牛顿-拉夫森法等。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。