1.实现参数的稀疏,这样可以简化模型,避免过拟合。在一个模型中重要的特征并不是很多,如果考虑所有的特征都是有作用的,那么就会对训练集进行充分的拟合,导致在测试集的表现并不是很好,所以我们需要稀疏参数,简化模型。
2.尽可能保证参数小一些,因为越是复杂的模型,它会对所有的样本点进行拟合,如果在这里包含异常的样本,就会在小区间内产生很大的波动,不同于平均水平的高点或者低点,这样的话,会导致其导数很大,我们知道在多项式导数中,只有参数非常大的时候,才会产生较大的导数,所以模型越复杂,参数值也就越大。为了避免这种过度的拟合,需要控制参数值的大小。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。