基于 MaxCompute SQL 的半结构化数据处理MaxCompute 主要解决方案是什么?
企业数据仓库/数据中台
将原始数据整合为可被广泛使用的知识,用于后续消费使用,包括:
•集成存储:收集、存储和集中管理企业内外数据;
•处理分析:清洗、加工、整合多方数据;面向业务需求统计、挖掘;统一的存储和处理可以提供弹性伸缩的存储计算能力,减少成本
•标准化:建立企业数据仓库模型(分层/分主题),建立数据标准,形成可复用数据资产,并且通过数据治理,进行数据生命周期安全、成本治理等、持续保障数据质量和标准化
•数据互通:在企业内流转共享标准数据,打通数据孤岛,让关联的数据发挥更大的价值
数据中台不仅是技术平台,还包含组织和管理流程要求,强调以公共数据产品服务业务,实现”数据业务化”,可认为数据仓库的一种最佳实践。MaxCompute+DataWorks是开箱即用的数据仓库解决方案。
BI分析/数据分析
BI分析并不必然要使用数据仓库,如可直接基于交易数据库分析
数据仓库能够帮助提供BI分析需要的企业视角的全面数据
通过数据仓库的数据资产管理,BI分析人员可更好地检索、理解数据
数据仓库还能够以强大的性能,满足多用户并发、分析不同数据规模需求
MaxCompute提供数据的集中管理、处理分析,可直接对接BI或者将数据同步到外部分析型数据库(OLAP)进行BI分析
BI分析/数据分析
BI分析并不必然要使用数据仓库,如可直接基于交易数据库分析
数据仓库能够帮助提供BI分析需要的企业视角的全面数据
通过数据仓库的数据资产管理,BI分析人员可更好地检索、理解数据
数据仓库还能够以强大的性能,满足多用户并发、分析不同数据规模需求
MaxCompute提供数据的集中管理、处理分析,可直接对接BI或者将数据同步到外部分析型数据库(OLAP)进行BI分析
预测分析/智能应用
数据仓库与AI集成日益紧密
数据仓库为机器学习进行数据加工、数据准备
机器学习对数据进行模型训练,数据预测,结果可直接固化在数据仓库进行知识共享,如用户画像分析对客户性别、偏好的预测
MaxCompute无缝集成PAI、SparkML,1个平台无需数据移动即可在企业数据之上建设基于机器学习的智能应用,如CTR预估、个性化推荐
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。