大家好, 我这边想做一个实时数仓项目。但随着Flink间Job的数量越来越多,发现很多Job之间的代码存在大量的重复,且迫切需要一个类似于Batch的中间层解决方案来减少冗余,增加整体的清晰度和层次感。 我这边能想到的解决方案是:采用Kafka作为Job之间的联系纽带,例如有两个Job Job_1: 从原始kafka topic TOPIC_ORIG获取数据, 进行一定的业务逻辑处理后,写到另一个kafka topic, TOPIC_JOB_1_SINK 。注意 ① 需要实现一个retract kafka sink ② 没有使用kafka exactly-once sink ③ TOPIC_JOB_1_SINK 中的每条记录应该有一个 unique key. ④ 每个Key相同的记录应该被发往相同的kafka partition. Job_2: 从TOPIC_JOB_1_SINK读取数据, 接着做幂等(先对唯一Key做group by取最新), 然后运行Job_2的逻辑 , 最后把数据写道最终Sink中(例如es, hbase, mysql)。 之所以要对unique key做一轮幂等处理,因为Job_1可能会失败重试,TOPIC_JOB_1_SINK中可能会有一些重试脏数据。
从整体上看,结构大概如下图所示: Job_1Job_2
| TOPIC_ORIG -> Logic_Job_1 -> TOPIC_JOB_1_SINK | ——> | TOPIC_JOB_1_SINK -> GROUP_BY_UNIQUE_KEY_GET_LATEST -> Logic_Job_2 -> FINAL_JOB_2_SINK |
即:每个Job往下游发送的数据整体有唯一Key;每个下游需要对上游发来的数据做幂等处理。 但是,可能存在的问题有: 1. 因为每个变化都要发一个message,Kafka中的消息数可能很大。 2. 下游做幂等的时候,因为要对每个Key做Group by,因此消耗的资源也很大。 3. 如果上游逻辑更改,重新跑数据,那么可能会存在最开始的那天数据不完整,导致污染下游数据 4. 如果上游逻辑更改,重新跑数据,但是某条数据这个时候已经不应该出现了,下游的数据得不到更新
请问大家是如何管理Flink Job之间的依赖或者说血缘关系的?有没有比较好的方案? 谢谢大家!*来自志愿者整理的flink邮件归档
最后四个问题,3和4和业务逻辑关系大些,我大致说下1和2的想法, 1. 因为每个变化都要发一个message,Kafka中的消息数可能很大。 这个问题,可以借助一些攒批的策略来减少数据量,比如在自定义的sink里加些cache,每1000条刷一次,刷的时候对这1000条按key去重。需要注意的是,攒批需要结合checkpoint一起来考虑,防止丢数据,可以参考下JDBCOutputFormat的实现(做checkpoint的时候需要flush)。此外,blink里面aggregate也有miniBatch的逻辑,也会减少输出的数据量(不过,flink里面还没有miniBatch)。
一些其他问题:
① 需要实现一个retract kafka sink 这里应该是需要实现一个upsert kafka sink,目前flink还没法输入retract message。*来自志愿者整理的flink
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。