开发者社区 问答 正文

写parquet文件的时候 出现 类转化异常如何解决?

在使用 ParquetAvroWriters.forGenericRecord(Schema schema) 写parquet文件的时候 出现 类转化异常: 下面是我的代码:

// //transfor 2 dataStream // TupleTypeInfo tupleTypeInfo = new TupleTypeInfo(GenericData.Record.class, BasicTypeInfo.STRING_TYPE_INFO, BasicTypeInfo.STRING_TYPE_INFO); TupleTypeInfo tupleTypeInfo = new TupleTypeInfo(BasicTypeInfo.STRING_TYPE_INFO, BasicTypeInfo.STRING_TYPE_INFO); DataStream testDataStream = flinkTableEnv.toAppendStream(test, tupleTypeInfo); testDataStream.print().setParallelism(1); ArrayList<org.apache.avro.Schema.Field> fields = new ArrayList<org.apache.avro.Schema.Field>(); fields.add(new org.apache.avro.Schema.Field("id", org.apache.avro.Schema.create(org.apache.avro.Schema.Type.STRING), "id", JsonProperties.NULL_VALUE)); fields.add(new org.apache.avro.Schema.Field("time", org.apache.avro.Schema.create(org.apache.avro.Schema.Type.STRING), "time", JsonProperties.NULL_VALUE)); org.apache.avro.Schema parquetSinkSchema = org.apache.avro.Schema.createRecord("pi", "flinkParquetSink", "flink.parquet", true, fields); String fileSinkPath = "./xxx.text/rs6/"; StreamingFileSink parquetSink = StreamingFileSink. forBulkFormat(new Path(fileSinkPath), ParquetAvroWriters.forGenericRecord(parquetSinkSchema)) .withRollingPolicy(OnCheckpointRollingPolicy.build()) .build(); testDataStream.addSink(parquetSink).setParallelism(1); flinkTableEnv.execute("ReadFromKafkaConnectorWriteToLocalFileJava");

下面是异常:

09:29:50,283 INFO org.apache.flink.runtime.taskmanager.Task - Sink: Unnamed (1/1) (79505cb6ab2df38886663fd99461315a) switched from RUNNING to FAILED.09:29:50,283 INFO org.apache.flink.runtime.taskmanager.Task - Sink: Unnamed (1/1) (79505cb6ab2df38886663fd99461315a) switched from RUNNING to FAILED.java.lang.ClassCastException: org.apache.flink.api.java.tuple.Tuple2 cannot be cast to org.apache.avro.generic.IndexedRecord

at org.apache.avro.generic.GenericData.getField(GenericData.java:697)

at org.apache.parquet.avro.AvroWriteSupport.writeRecordFields(AvroWriteSupport.java:188)

at org.apache.parquet.avro.AvroWriteSupport.write(AvroWriteSupport.java:165)

at org.apache.parquet.hadoop.InternalParquetRecordWriter.write(InternalParquetRecordWriter.java:128)

at org.apache.parquet.hadoop.ParquetWriter.write(ParquetWriter.java:299)

at org.apache.flink.formats.parquet.ParquetBulkWriter.addElement(ParquetBulkWriter.java:52) at org.apache.flink.streaming.api.functions.sink.filesystem.BulkPartWriter.write(BulkPartWriter.java:50)

at org.apache.flink.streaming.api.functions.sink.filesystem.Bucket.write(Bucket.java:214)

at org.apache.flink.streaming.api.functions.sink.filesystem.Buckets.onElement(Buckets.java:274)

at org.apache.flink.streaming.api.functions.sink.filesystem.StreamingFileSink.invoke(StreamingFileSink.java:445)

at org.apache.flink.streaming.api.operators.StreamSink.processElement(StreamSink.java:56)

at org.apache.flink.streaming.runtime.tasks.OneInputStreamTask$StreamTaskNetworkOutput.emitRecord(OneInputStreamTask.java:173)

at org.apache.flink.streaming.runtime.io.StreamTaskNetworkInput.processElement(StreamTaskNetworkInput.java:151) at org.apache.flink.streaming.runtime.io.StreamTaskNetworkInput.emitNext(StreamTaskNetworkInput.java:128) at org.apache.flink.streaming.runtime.io.StreamOneInputProcessor.processInput(StreamOneInputProcessor.java:69)

at org.apache.flink.streaming.runtime.tasks.StreamTask.processInput(StreamTask.java:311)

at org.apache.flink.streaming.runtime.tasks.mailbox.MailboxProcessor.runMailboxLoop(MailboxProcessor.java:187)

at org.apache.flink.streaming.runtime.tasks.StreamTask.runMailboxLoop(StreamTask.java:487)

at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:470)

at org.apache.flink.runtime.taskmanager.Task.doRun(Task.java:707)

at org.apache.flink.runtime.taskmanager.Task.run(Task.java:532)

at java.lang.Thread.run(Thread.java:748)09:29:50,284

INFO org.apache.flink.runtime.taskmanager.Task - Freeing task resources for Sink: Unnamed (1/1) (79505cb6ab2df38886663fd99461315a).09:29:50,285 INFO org.apache.flink.runtime.taskmanager.Task - Ensuring all FileSystem streams are closed for task Sink: Unnamed (1/1) (79505cb6ab2df38886663fd99461315a) [FAILED]09:29:50,289

INFO org.apache.flink.runtime.taskexecutor.TaskExecutor - Un-registering task and sending final execution state FAILED to JobManager for task Sink: Unnamed (1/1) 79505cb6ab2df38886663fd99461315a.09:29:50,293 INFO org.apache.flink.runtime.executiongraph.ExecutionGraph - Sink: Unnamed (1/1) (79505cb6ab2df38886663fd99461315a)

switched from RUNNING to FAILED.java.lang.ClassCastException: org.apache.flink.api.java.tuple.Tuple2 cannot be cast to org.apache.avro.generic.IndexedRecord at org.apache.avro.generic.GenericData.getField(GenericData.java:697) at org.apache.parquet.avro.AvroWriteSupport.writeRecordFields(AvroWriteSupport.java:188) at org.apache.parquet.avro.AvroWriteSupport.write(AvroWriteSupport.java:165)

请问是否是使用方式不对?还是什么问题?

*来自志愿者整理的flink邮件归档

展开
收起
游客nnqbtnagn7h6s 2021-12-06 18:47:36 819 分享 版权
阿里云 AI 助理回答

从提供的错误信息来看,问题在于尝试将Flink的Tuple2对象写入Parquet文件时,使用了期望IndexedRecord类型的Avro writer。具体异常信息是:

java.lang.ClassCastException: org.apache.flink.api.java.tuple.Tuple2 cannot be cast to org.apache.avro.generic.IndexedRecord

这意味着你的Flink DataStream中的数据类型(即Tuple2<String, String>)与你为Parquet Avro writer指定的期望类型(即GenericRecord,它是IndexedRecord的一个实现)不匹配。

要解决这个问题,你需要在Flink程序中将Tuple数据转换为Avro GenericRecord实例。这里是一个简化的步骤来指导你如何进行转换:

  1. 创建一个方法来将Tuple转换为Avro Record: 首先,定义一个方法,该方法接收Tuple2作为输入,并返回一个根据你的Avro schema构建的GenericRecord。
public static GenericRecord tupleToGenericRecord(Tuple2<String, String> tuple, Schema avroSchema) {
    GenericRecord record = new GenericData.Record(avroSchema);
    record.put("id", tuple.f0);
    record.put("time", tuple.f1);
    return record;
}
  1. 修改DataStream以转换Tuple为GenericRecord: 在写入sink之前,使用map操作将DataStream中的每个Tuple转换为GenericRecord。
DataStream<GenericRecord> avroDataStream = testDataStream.map(
    tuple -> tupleToGenericRecord(tuple, parquetSinkSchema),
    TypeInformation.of(GenericRecord.class)
);
  1. 更新sink配置以使用转换后的DataStream: 现在,用转换后的avroDataStream替换原来的testDataStream来创建sink。
avroDataStream.addSink(parquetSink).setParallelism(1);

这样,你就确保了在写入Parquet文件之前,数据已经被正确地转换成了Avro GenericRecord格式,从而避免了类转换异常。完成这些更改后,你的代码应该能够成功运行并生成预期的Parquet文件。

有帮助
无帮助
AI 助理回答生成答案可能存在不准确,仅供参考
0 条回答
写回答
取消 提交回答