你好: 我在使用flink 1.11.2版本的时候使用flinksql处理两条流。因为两条流都是数据库变更信息,我需要取最新的数据关联;所以分别对两条流做row_number=1 (SELECT [column_list] FROM ( SELECT [column_list], ROW_NUMBER() OVER ([PARTITION BY col1[, col2...]] ORDER BY time_attr [asc|desc]) AS rownum FROM table_name) WHERE rownum = 1) 去重后再左关联; 前期当左流变更都没有问题,结果符合预期;当右流有数据时,第一条数据也符合预期,但是右流在发送一条数据出现变更时,出现了一条不符合预期的数据;
left> (true,3774bca649224249bdbcb8e7c80b52f9,TS202012141551420518,3,2a30402475dd4d89b461d2e457b297f0,NP02,NP020101,NP020202,yangkg001,,2020-12-14 15:59:50,4f28c1211e274bba819cc63680a3b386,null,null,null,null) right> (true,3774bca649224249bdbcb8e7c80b52f9,1,0,8,1607932790000) left> (false,3774bca649224249bdbcb8e7c80b52f9,TS202012141551420518,3,2a30402475dd4d89b461d2e457b297f0,NP02,NP020101,NP020202,yangkg001,,2020-12-14 15:59:50,4f28c1211e274bba819cc63680a3b386,null,null,null,null) left> (true,3774bca649224249bdbcb8e7c80b52f9,TS202012141551420518,3,2a30402475dd4d89b461d2e457b297f0,NP02,NP020101,NP020202,yangkg001,,2020-12-14 15:59:50,4f28c1211e274bba819cc63680a3b386,1,0,8,1607932790000) left> (false,3774bca649224249bdbcb8e7c80b52f9,TS202012141551420518,3,2a30402475dd4d89b461d2e457b297f0,NP02,NP020101,NP020202,yangkg001,,2020-12-14 15:59:50,4f28c1211e274bba819cc63680a3b386,1,0,8,1607932790000) left> (true,3774bca649224249bdbcb8e7c80b52f9,TS202012141551420518,3,2a30402475dd4d89b461d2e457b297f0,NP02,NP020101,NP020202,yangkg001,yangkg001,null,4f28c1211e274bba819cc63680a3b386,1,0,8,1607932790000) right> (false,3774bca649224249bdbcb8e7c80b52f9,1,0,8,1607932790000) right> (true,3774bca649224249bdbcb8e7c80b52f9,1,0,1,1607933006000) left> (false,3774bca649224249bdbcb8e7c80b52f9,TS202012141551420518,3,2a30402475dd4d89b461d2e457b297f0,NP02,NP020101,NP020202,yangkg001,yangkg001,null,4f28c1211e274bba819cc63680a3b386,1,0,8,1607932790000) left> (true,3774bca649224249bdbcb8e7c80b52f9,TS202012141551420518,3,2a30402475dd4d89b461d2e457b297f0,NP02,NP020101,NP020202,yangkg001,yangkg001,null,4f28c1211e274bba819cc63680a3b386,null,null,null,null) left> (false,3774bca649224249bdbcb8e7c80b52f9,TS202012141551420518,3,2a30402475dd4d89b461d2e457b297f0,NP02,NP020101,NP020202,yangkg001,yangkg001,null,4f28c1211e274bba819cc63680a3b386,null,null,null,null) left> (true,3774bca649224249bdbcb8e7c80b52f9,TS202012141551420518,3,2a30402475dd4d89b461d2e457b297f0,NP02,NP020101,NP020202,yangkg001,yangkg001,null,4f28c1211e274bba819cc63680a3b386,1,0,1,1607933006000)
第1行左流来了数据显示true,此时右流没有数据结果是null; 第2行右流来了数据,显示为true(单独打印了右流的结果); 第3行显示左流撤回; 第4行 左右流数据关联上,正常显示; 第5行 左流数据变更,数据撤回; 第6行 显示变更后的数据; 第7行 右流数据变化,数据撤回; 第8行 显示右流最新的结果; 第9行 因为右流数据变化 所以左流(关联数据)撤回; 第10行 和第11 行 不符合预期; 正常应该是 右流发生变化 第9行 因为右流数据变化 所以左流(关联数据)撤回;然后右流的最新数据和左流产生结果;显示第12行数据才对; 所以想请教一下大家;
1607998361520> (true,3774bca649224249bdbcb8e7c80b52f9,TS202012141551420518,3,2a30402475dd4d89b461d2e457b297f0,NP02,NP020101,NP020202,yangkg001,yangkg001,null,4f28c1211e274bba819cc63680a3b386,null,null,null,null) 1607998361520> (false,3774bca649224249bdbcb8e7c80b52f9,TS202012141551420518,3,2a30402475dd4d89b461d2e457b297f0,NP02,NP020101,NP020202,yangkg001,yangkg001,null,4f28c1211e274bba819cc63680a3b386,null,null,null,null)
我的sql语句如下 String sql = "SELECT a.sheetId sheetId,sheetCode,sheetStatus,sheetType,sheetScene,sheetObject," + " sheetPresentation,sheetAcceptor,sheetHandler,updateTime,dealTaskId,provided,satisfied,score,operateTime " + " from (SELECT sheetId,sheetCode,sheetStatus,sheetType,sheetScene,sheetObject," + " sheetPresentation,sheetAcceptor,sheetHandler,updateTime,dealTaskId" + " FROM (SELECT *," + " ROW_NUMBER() OVER (PARTITION BY sheetId ORDER BY operateTime desc) AS rownum " + " FROM sheetMain)" + " WHERE rownum = 1 ) a" + " left JOIN " + " (select sheetId,provided,satisfied,score,operateTime from (SELECT *," + " ROW_NUMBER() OVER (PARTITION BY sheetId ORDER BY operateTime desc) AS rownum " + " FROM sheetAnswers)" + " WHERE rownum = 1 ) c" + " ON a.sheetId = c.sheetId " ;*来自志愿者整理的flink邮件归档
我是这样想的,因为最后的两条流关联是 两条结果流的关联,两条结果流 都属于回撤流,任何一边变化都是2条消息;对于左侧第一条就是回撤,第二条就是变化后的;但是右边发生变化 则会有两条数据,false消息 和左边关联 认为变化整个流表示变化回撤再显示关联后的数据;true数据来了再次关联 认为整个流变化;撤回再关联发出;
我的想法是可不可以 之和右边流为true的数据关联;*来自志愿者整理的FLINK邮件归档
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。