离散化处理的必要性如下:
节约计算资源,提高计算效率。
算法模型(尤其是分类模型)的计算需要。虽然很多模型,例如决策树可以支持输入连续型数据,但是决策树本身会先将连续型数据转化为离散型数据,因此离散化转换是一个必要步骤。
增强模型的稳定性和准确度。数据离散化之后,处于异常状态的数据不会明显地突出异常特征,而是会被划分为一个子集中的一部分,因此异常数据对模型的影响会大大降低,尤其是基于距离计算的模型(例如K均值、协同过滤等)效果明显。
特定数据处理和分析的必要步骤,尤其在图像处理方面应用广泛。大多数图像做特征检测(以及其他基于特征的分析)时,都需要先将图像做二值化处理,二值化也是离散化的一种。
模型结果应用和部署的需要。如果原始数据的值域分布过多,或值域划分不符合业务逻辑,那么模型结果将很难被业务理解并应用。
资料来源:《Python数据分析与数据化运营(第2版)》,文章链接:https://developer.aliyun.com/article/726313
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。