开发者社区> 问答> 正文

机器学习的集成算法是什么?

机器学习的集成算法是什么?

展开
收起
松岛菜菜 2021-10-22 15:21:52 685 0
来自:华章出版社
1 条回答
写回答
取消 提交回答
  • 集成算法用一些相对较弱的学习模型独立地就同样的样本进行训练,然后把结果整合起来进行整体预测。集成算法的主要难点在于究竟集成哪些独立的较弱的学习模型以及如何把学习结果整合起来。这是一类非常强大的算法,同时也非常流行。 常见的算法包括:Boosting、Bagging(Bootstrapped Aggregation)、AdaBoost、堆叠泛化(Stacked Generalization,Blending)、梯度推进机(Gradient Boosting Machine,GBM)和随机森林(Random Forest)。

    2021-10-22 15:54:42
    赞同 展开评论 打赏
来源圈子
更多
收录在圈子:
+ 订阅
问答排行榜
最热
最新

相关电子书

更多
大规模机器学习在蚂蚁+阿里的应用 立即下载
基于Spark的面向十亿级别特征的 大规模机器学习 立即下载
基于Spark的大规模机器学习在微博的应用 立即下载