Spark 3.0 的Adaptive Query Execution是什么? 求大佬解答
对查询执行计划的优化,允许 Spark Planner 在运行时执行可选的执行计划,这些计划将基于运行时统计数据进行优化。 AQE 框架目前提供了三个功能: - 动态合并 shuffle partitions; - 动态调整 join 策略; - 动态优化倾斜的 join(skew joins)。
AdaptiveQueryExecution(AQE)在之前的版本里已经有所实现,但是之前的框架存在一些缺ApacheSpark的前世今生<6陷,导致使用不是很多,在Spark3.0中Databricks(Spark初创团队创建的大数据与AI智能公司)和Intel的工程师合作,解决了相关的问题。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
阿里云EMR是云原生开源大数据平台,为客户提供简单易集成的Hadoop、Hive、Spark、Flink、Presto、ClickHouse、StarRocks、Delta、Hudi等开源大数据计算和存储引擎,计算资源可以根据业务的需要调整。EMR可以部署在阿里云公有云的ECS和ACK平台。