读取本地一个配置文件,生成广播流,用来过滤数据。 flink任务启动的时候使用-ys将文件分发到各节点。 我改如何修改这个配置文件。
java @Override public void run(SourceContext
 
   sourceContext) throws Exception {
 
//读取外部文件 while (isRun) { String tmp; try (BufferedReader br = new BufferedReader(new FileReader(properties.getProperty("iot.filter.conf.file")))) { tmp = br.readLine(); }
// System.out.println(tmp); if (!StringUtils.equals(value, tmp) && tmp != null) { value = tmp; sourceContext.collect(value); } Thread.sleep(3600); } }
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
1、实时流:
基于flink1.9.2,必须使用FlinkKafkaConsumer
FlinkKafkaConsumer ssConsumer = new FlinkKafkaConsumer(READ_TOPIC, new SimpleStringSchema(), properties);
2、文件流:
DataStreamSource fileStreamSource = env.addSource(new MyRishSourceFileReader());
3、自定义Source:
自定义的Source,继承RichSourceFunction,重写函数。在open函数中读取文件,存入ConcurrentHashMap中,在run函数中ctx.collect()出去,然后在BroadcastProcessFunction中的processBroadcastElement函数里接收。
import com.alibaba.fastjson.JSONObject;
import com.maxmind.geoip2.DatabaseReader;
import com.qianxin.ida.dto.DeviceUserBaseLineDto;
import com.qianxin.ida.dto.GpsBaseLineDto;
import com.qianxin.ida.dto.TimeBaseLineDto;
import com.qianxin.ida.dto.UserDeviceBaseLineDto;
import com.qianxin.ida.enrich.BuildBaseLineDto;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.source.RichSourceFunction;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
 
import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import java.util.List;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
 
public class MyRishSourceFileReader extends RichSourceFunction<JSONObject> {
    public static DatabaseReader reader;
    private List<TimeBaseLineDto> timeBaseLineDtos;
    public final static ConcurrentHashMap<String, Object> map = new ConcurrentHashMap<>();
    private static final Logger logger = LoggerFactory.getLogger(MyRishSourceFileReader.class);
 
    @Override
    public void open(Configuration configuration) {
        try {
            //启动时读取首次
            query();
            reader = TransUtil.getDatabaseReader();
            //线程定时任务,每隔23小时,执行一次
            ScheduledExecutorService service = Executors.newScheduledThreadPool(5);
            service.scheduleWithFixedDelay(() -> {
                try {
                    query();
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }, 10L, 23L, TimeUnit.HOURS);
 
        } catch (Exception e) {
            logger.error("读取文件失败", e);
        }
    }
 
    public void query() {
        logger.info("当前读取基线文件的时间:" + LocalDateTime.now().format(DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss")));
        timeBaseLineDtos = BuildBaseLineDto.getTimeBaseLine();
        map.put("timeBaseLineDtos", timeBaseLineDtos);
    }
 
    @Override
    public void run(SourceContext ctx) {
        try {
            JSONObject out = new JSONObject();
            JSONObject configJsonFile = JSONObject.parseObject(JsonFileReaderUtil.readJsonData(PropertyReaderUtil.getStrValue("config.json.path")));
            out.put("configJsonFile", configJsonFile);
            out.put("timeBaseLineDtos", map.get("timeBaseLineDtos"));
            ctx.collect(out);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
 
    @Override
    public void cancel() {
    }
 
}
 
将文件流广播,connect实时流ssConsumer,自定义广播流函数。 4、广播:
需要自己实现两个方法:processBroadcastElement()负责处理广播流中的传入元素,processElement()负责处理非广播流中的传入元素。从ReadOnlyContext中取到SourceContext的map,实时流数据和广播流数据汇聚,进行业务逻辑处理,最后out输出,进行sink等操作。
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.qianxin.ida.dto.DeviceUserBaseLineDto;
import com.qianxin.ida.dto.GpsBaseLineDto;
import com.qianxin.ida.dto.TimeBaseLineDto;
import com.qianxin.ida.dto.UserDeviceBaseLineDto;
import com.qianxin.ida.utils.TransUtil;
import org.apache.flink.api.common.state.BroadcastState;
import org.apache.flink.api.common.state.MapStateDescriptor;
import org.apache.flink.shaded.netty4.io.netty.util.internal.StringUtil;
import org.apache.flink.streaming.api.functions.co.BroadcastProcessFunction;
import org.apache.flink.util.Collector;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
 
import java.math.BigDecimal;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;
 
public class MyBroadcastProcessFunction extends BroadcastProcessFunction<String, JSONObject, String> {
 
    private static final Logger logger = LoggerFactory.getLogger(MyBroadcastProcessFunction.class);
    private MapStateDescriptor<String, JSONObject> ruleStateDescriptor;
    private String eventType;
 
    public MyBroadcastProcessFunction(MapStateDescriptor<String, JSONObject> ruleStateDescriptor, String eventType) {
        this.ruleStateDescriptor = ruleStateDescriptor;
        this.eventType = eventType;
    }
 
    //这里处理广播流的数据
    @Override
    public void processBroadcastElement(JSONObject jsonObject, Context ctx, Collector<String> collector) throws Exception {
        BroadcastState<String, JSONObject> broadcastState = ctx.getBroadcastState(ruleStateDescriptor);
        broadcastState.put("broadcast", jsonObject);
    }
 
    //这里处理数据流的数据
    @Override
    public void processElement(String value, ReadOnlyContext ctx, Collector<String> out) {
        double probability = 0;
        JSONObject currentStreamData = JSON.parseObject(value);
        if (currentStreamData != null) {
            try {
                Iterator<Map.Entry<String, JSONObject>> iterator = ctx.getBroadcastState(ruleStateDescriptor).immutableEntries().iterator();
                while (iterator.hasNext()) {
                    String outStr = "";
                    Object object = iterator.next().getValue();
                    JSONObject jsonObject = (JSONObject) JSON.toJSON(object);
                    JSONObject configJsonFile = (JSONObject) JSON.toJSON(jsonObject.get("configJsonFile"));
                    List<TimeBaseLineDto> timeBaseLineDto = (List<TimeBaseLineDto>) jsonObject.get("timeBaseLineDtos");
                    if ("1".equals(eventType)) {
                        //业务逻辑函数
                        outStr = doTimeOutierEvent(timeBaseLineDto, currentStreamData, configJsonFile);
                    } 
                    if (!StringUtil.isNullOrEmpty(outStr)) {
                        out.collect(outStr);
                    }
                }
            } catch (Exception e) {
                logger.error("处理广播流和数据流数据出错:", e);
            }
        }
    }
}
 
5、连接两个流:
将实时流和广播流连接,非广播流上调用connect()
    BroadcastStream<JSONObject> timeBroadcast = fileStreamSource.setParallelism(1).broadcast(ruleStateDesc);
    DataStream<JSONObject> timeStream = env.addSource(ssConsumer)
            .connect(timeBroadcast).process(new MyBroadcastProcessFunction(ruleStateDesc,"1"));
 
5、Sink:
timeStream.addSink(FlinkKafkaProducerCustom.create(WRITE_TOPIC, properties)).name("flink-kafka-timeStream");
————————————— 原文链接:https://blog.csdn.net/saranjiao/article/details/105436295