最大子数组问题和前文讲过的 经典动态规划:最长递增子序列 的套路非常相似,代表着一类比较特殊的动态规划问题的思路:
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
思路分析
其实第一次看到这道题,我首先想到的是 滑动窗口算法,因为我们前文说过嘛,滑动窗口算法就是专门处理子串/子数组问题的,这里不就是子数组问题么?
但是,稍加分析就发现,这道题还不能用滑动窗口算法,因为数组中的数字可以是负数。
滑动窗口算法无非就是双指针形成的窗口扫描整个数组/子串,但关键是,你得清楚地知道什么时候应该移动右侧指针来扩大窗口,什么时候移动左侧指针来减小窗口。
而对于这道题目,你想想,当窗口扩大的时候可能遇到负数,窗口中的值也就可能增加也可能减少,这种情况下不知道什么时机去收缩左侧窗口,也就无法求出「最大子数组和」。
解决这个问题需要动态规划技巧,但是dp数组的定义比较特殊。按照我们常规的动态规划思路,一般是这样定义dp数组:
nums[0..i]中的「最大的子数组和」为dp[i]。
如果这样定义的话,整个nums数组的「最大子数组和」就是dp[n-1]。如何找状态转移方程呢?按照数学归纳法,假设我们知道了dp[i-1],如何推导出dp[i]呢?
如下图,按照我们刚才对dp数组的定义,dp[i] = 5,也就是等于nums[0..i]中的最大子数组和:
那么在上图这种情况中,利用数学归纳法,你能用dp[i]
推出dp[i+1]
吗?
实际上是不行的,因为子数组一定是连续的,按照我们当前dp
数组定义,并不能保证nums[0..i]
中的最大子数组与nums[i+1]
是相邻的,也就没办法从dp[i]
推导出dp[i+1]
。
所以说我们这样定义dp
数组是不正确的,无法得到合适的状态转移方程。对于这类子数组问题,我们就要重新定义dp
数组的含义:
以nums[i]
为结尾的「最大子数组和」为dp[i]
。
这种定义之下,想得到整个nums
数组的「最大子数组和」,不能直接返回dp[n-1]
,而需要遍历整个dp
数组:
int res = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
res = Math.max(res, dp[i]);
}
return res;
依然使用数学归纳法来找状态转移关系:假设我们已经算出了dp[i-1],如何推导出dp[i]呢?
可以做到,dp[i]有两种「选择」,要么与前面的相邻子数组连接,形成一个和更大的子数组;要么不与前面的子数组连接,自成一派,自己作为一个子数组。
如何选择?既然要求「最大子数组和」,当然选择结果更大的那个啦:
// 要么自成一派,要么和前面的子数组合并
dp[i] = Math.max(nums[i], nums[i] + dp[i - 1]);
综上,我们已经写出了状态转移方程,就可以直接写出解法了:
int maxSubArray(int[] nums) {
int n = nums.length;
if (n == 0) return 0;
int[] dp = new int[n];
// base case
// 第一个元素前面没有子数组
dp[0] = nums[0];
// 状态转移方程
for (int i = 1; i < n; i++) {
dp[i] = Math.max(nums[i], nums[i] + dp[i - 1]);
}
// 得到 nums 的最大子数组
int res = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
res = Math.max(res, dp[i]);
}
return res;
}
以上解法时间复杂度是 O(N),空间复杂度也是 O(N),较暴力解法已经很优秀了,不过注意到dp[i]仅仅和dp[i-1]的状态有关,那么我们可以进行「状态压缩」,将空间复杂度降低:
int maxSubArray(int[] nums) {
int n = nums.length;
if (n == 0) return 0;
// base case
int dp_0 = nums[0];
int dp_1 = 0, res = dp_0;
for (int i = 1; i < n; i++) {
// dp[i] = max(nums[i], nums[i] + dp[i-1])
dp_1 = Math.max(nums[i], nums[i] + dp_0);
dp_0 = dp_1;
// 顺便计算最大的结果
res = Math.max(res, dp_1);
}
return res;
}
最后总结
虽然说动态规划推状态转移方程确实比较玄学,但大部分还是有些规律可循的。
今天这道「最大子数组和」就和「最长递增子序列」非常类似,dp数组的定义是「以nums[i]为结尾的最大子数组和/最长递增子序列为dp[i]」。因为只有这样定义才能将dp[i+1]和dp[i]建立起联系,利用数学归纳法写出状态转移方程。
来源 | github
作者 | labuladong
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。