请问人工神经网络中为什么ReLu要好过于tanh和sigmoid function?
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
激活函数是为了增加非线性因素, 但tanh和sigmoid到训练末尾会有导数趋于0的情况, 相当于限制了模型的优化上限. ReLU有非线性, 大于0的时候导数为1, 就大概率避免了tanh一样的梯度消失. ReLU的非线性是靠(0,0)点的那一折, 把所有(负值, 0)的点都当作(0,0)点训练, 有点反直觉, 转变的也很硬, 最难受的是万一某个神经元值一直是负值, 经过ReLU永远是0, 有没有它没区别了, 所以会有各种各样的改进ReLU.
评论
全部评论 (0)