关于rds 实例cpu 超过100%,通常这种情况都是由于sql 性能问题导致的,下面我用一则案例来分析:
用户实例xxx反馈cpu 超过100%,实例偶尔出现卡住的现象
1.原理:cpu 消耗过大通常情况下都是有慢sql 造成的,这里的慢sql 包括全表扫描,扫描数据量过大,内存排序,磁盘排序,锁争用等待等;
2.表现现象:sql 执行状态为:sending data,Copying to tmp table,Copying to tmp
table on disk,Sorting result,locked;
3.解决方法:用户可以登录到rds,通过show processlist查看当前正在执行的sql,当执行完show processlist后出现大量的语句,通常其状态出现sending data,Copying to tmp table,Copying to tmp table on disk,Sorting result, Using filesort 都是sql有性能问题;
A.sending data表示:sql正在从表中查询数据,如果查询条件没有适当的索引,则会导致sql执行时间过长;
B.Copying to tmp table on disk:出现这种状态,通常情况下是由于临时结果集太大,超过了数据库规定的临时内存大小,需要拷贝临时结果集到磁盘上,这个时候需要用户对sql进行优化;
C.Sorting result, Using filesort:出现这种状态,表示sql正在执行排序操作,排序操作都会引起较多的cpu消耗,通常的优化方法会添加适当的索引来消除排序,或者缩小排序的结果集;
通过show processlist发现如下sql:
Sql A.
| 2815961 | sanwenba | 10.241.142.197:55190 | sanwenba |
Query | 0 | Sorting result | select z.aid,z.subject from
www_zuowen z right join www_zuowenaddviews za on za.aid=z.aid order by
za.viewnum desc limit 10;
性能sql:
select z.aid,z.subject from www_zuowen z right join www_zuowenaddviews za
on za.aid=z.aid order by za.viewnum desc limit 10;
用explain 查看执行计划:
sanwenba@3018 10:00:54>explain select z.aid,z.subject from www_zuowen z
right join www_zuowenaddviews za on za.aid=z.aid order by za.viewnum desc
limit 10;
+----+-------------+-------+--------+---------------+---------+---------+-----------------+------
| id | select_type | table | type | possible_keys | key | key_len | ref |
rows | Extra |
+----+-------------+-------+--------+---------------+---------+---------+-----------------+------
| 1 | SIMPLE | za | index | NULL | viewnum | 6 |
NULL | 537029 | Using index; Using filesort |
| 1 | SIMPLE | z | eq_ref | PRIMARY | PRIMARY | 3 |
sanwenba.za.aid | 1 | |
添加适当索引消除排序:
sanwenba@3018 10:02:33>alter table www_zuowenaddviews add index
ind_www_zuowenaddviews_viewnum(viewnum);
sanwenba@3018 10:03:27>explain select z.aid,z.subject from www_zuowen z
right join www_zuowenaddviews za on za.aid=z.aid order by za.viewnum desc
limit 10;
+----+-------------+-------+--------+---------------+--------------------------------+---------+-
| id | select_type | table | type | possible_keys | key |
key_len | ref | rows | Extra |
+----+-------------+-------+--------+---------------+--------------------------------+---------+-|
1 | SIMPLE | za | index | NULL |
ind_www_zuowenaddviews_viewnum | 3 | NULL | 10 | Using index |
| 1 | SIMPLE | z | eq_ref | PRIMARY PRIMARY | 3 | sanwenba.za.aid
| 1 | |
+----+-------------+-------+--------+---------------+--------------------------------+---------+-
Sql B:
| 2825321 | netzuowen | 10.200.120.41:44172 | netzuowen |
Query | 2 | Copying to tmp table on disk |
SELECT * FROM `www_article` WHERE 1=1 ORDER BY rand() LIMIT 0,30
这种sql order by rand()同样也会出现排序;
netzuowen@3018 10:23:55>explain SELECT * FROM `www_zuowensearch`
WHERE checked = 1 ORDER BY rand() LIMIT 0,10 ;
+----+-------------+------------------+------+---------------+--------+---------+-------+------+
| id | select_type | table | type | possible_keys | key | key_len | ref |
rows | Extra |
+----+-------------+------------------+------+---------------+--------+---------+-------+------+
| 1 | SIMPLE | www_zuowensearch | ref | newest | newest | 1 |
const | 1443 | Using temporary; Using filesort |
+----+-------------+------------------+------+---------------+--------+---------+-------+------+
这种随机抽取一批记录的做法性能是很差的,表中的数据量越大,性能就越差:
解决方法如下:
http://www.piaoyi.org/php/MySQL-Order-By-Rand.html
第一种方案,即原始的Order By Rand() 方法:
$sql="SELECT * FROM content ORDER BY rand() LIMIT 12";
$result=mysql_query($sql,$conn);
$n=1;
$rnds='';
while($row=mysql_fetch_array($result)){
$rnds=$rnds.$n.".
href='show".$row['id']."-".strtolower(trim($row['title']))."'>".$row['title']."
/>\n";
$n++;
}
3万条数据查12条随机记录,需要0.125秒,随着数据量的增大,效率越来越低。
第二种方案,改进后的JOIN 方法:
for($n=1;$n<=12;$n++){
$sql="SELECT * FROM `content` AS t1
JOIN (SELECT ROUND(RAND() * (SELECT MAX(id) FROM `content`)) AS id) AS t2
WHERE t1.id >= t2.id ORDER BY t1.id ASC LIMIT 1";
$result=mysql_query($sql,$conn);
$yi=mysql_fetch_array($result);
$rnds = $rnds.$n.".
href='show".$yi['id']."-".strtolower(trim($yi['title']))."'>".$yi['title']."\n";
}
3万条数据查12条随机记录,需要0.004秒,效率大幅提升,比第一种方案提升
了约30倍。缺点:多次select查询,IO开销大。
第三种方案,SQL语句先随机好ID序列,用IN 查询(飘易推荐这个用法,IO
开销小,速度最快):
$sql="SELECT MAX(id),MIN(id) FROM content";
$result=mysql_query($sql,$conn);
$yi=mysql_fetch_array($result);
$idmax=$yi[0];
$idmin=$yi[1];
$idlist='';
for($i=1;$i<=20;$i++){
if($i==1){ $idlist=mt_rand($idmin,$idmax); }
else{ $idlist=$idlist.','.mt_rand($idmin,$idmax); }
}
$idlist2="id,".$idlist;
$sql="select * from content where id in ($idlist) order by field($idlist2) LIMIT
0,12";
$result=mysql_query($sql,$conn);
$n=1;
$rnds='';
while($row=mysql_fetch_array($result)){
$rnds=$rnds.$n.".
href='show".$row['id']."-".strtolower(trim($row['title']))."'>".$row['title']."
/>\n";
$n++;
}
3万条数据查12条随机记录,需要0.001秒,效率比第二种方法又提升了4倍左右,比第一种方法提升120倍。注,这里使用了order by field($idlist2) 是为了不排序,否则IN 是自动会排序的。缺点:有可能遇到ID被删除的情况,所以需要多选几个ID。
C.出现sending data的情况:
| 2833185 | sanwenba | 10.241.91.81:45964 | sanwenba | Query
| 1 | Sending data | SELECT * FROM `www_article` WHERE
CONCAT(subject,description) like '%??%' ORDER BY aid desc LIMIT 75,15
性能sql:
SELECT * FROM `www_article` WHERE CONCAT(subject,description) like
'%??%' ORDER BY aid desc LIMIT 75,15
这种sql是典型的sql分页写法不规范的情况,需要将sql进行改写:
select * from www_article t1,(select aid from www_article where
CONCAT(subject,description) like '%??%' ORDER BY aid desc LIMIT 75,15)t2 where t1.aid=t2.aid;
注意这里的索引需要改用覆盖索引:aid+ subject+description
优化后的结果:
总结:
Sql优化是性能优化的最后一步,虽然位于塔顶,他最直影响用户的使用,但也是最容易优化的步骤,往往效果最直接。RDS-mysql由于有资源的隔离,不同的实例规格拥有的iops能力不同,比如新1型提供的iops为150个,也就是每秒能够提供150次的随机磁盘io操作,所以如果用户的数据量很大,内存很小,由于iops的限制,一条慢sql就很有可能消耗掉所有的io资源,而影响其他的sql查询,对于数据库来说就是所有的sql需要执行很长的时间才能返回结果,对于应用来说就会造成整体响应的变慢。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。