开发者社区> 问答> 正文

理解MySQL——索引与优化

索引对查询的速度有着至关重要的影响,理解索引也是进行数据库性能调优的起点。考虑如下情况,假设数据库中一个表有10^6条记录,DBMS的页面大小为4K,并存储100条记录。如果没有索引,查询将对整个表进行扫描,最坏的情况下,如果所有数据页都不在内存,需要读取10^4个页面,如果这10^4个页面在磁盘上随机分布,需要进行10^4次I/O,假设磁盘每次I/O时间为10ms(忽略数据传输时间),则总共需要100s(但实际上要好很多很多)。如果对之建立B-Tree索引,则只需要进行log100(10^6)=3次页面读取,最坏情况下耗时30ms。这就是索引带来的效果,很多时候,当你的应用程序进行SQL查询速度很慢时,应该想想是否可以建索引。进入正题:

第二章、索引与优化
1、选择索引的数据类型
MySQL支持很多数据类型,选择合适的数据类型存储数据对性能有很大的影响。通常来说,可以遵循以下一些指导原则:(1)越小的数据类型通常更好:越小的数据类型通常在磁盘、内存和CPU缓存中都需要更少的空间,处理起来更快。
(2)简单的数据类型更好:整型数据比起字符,处理开销更小,因为字符串的比较更复杂。在MySQL中,应该用内置的日期和时间数据类型,而不是用字符串来存储时间;以及用整型数据类型存储IP地址。
(3)尽量避免NULL:应该指定列为NOT NULL,除非你想存储NULL。在MySQL中,含有空值的列很难进行查询优化,因为它们使得索引、索引的统计信息以及比较运算更加复杂。你应该用0、一个特殊的值或者一个空串代替空值。

1.1、选择标识符
选择合适的标识符是非常重要的。选择时不仅应该考虑存储类型,而且应该考虑MySQL是怎样进行运算和比较的。一旦选定数据类型,应该保证所有相关的表都使用相同的数据类型。
(1)    整型:通常是作为标识符的最好选择,因为可以更快的处理,而且可以设置为AUTO_INCREMENT。

(2)    字符串:尽量避免使用字符串作为标识符,它们消耗更好的空间,处理起来也较慢。而且,通常来说,字符串都是随机的,所以它们在索引中的位置也是随机的,这会导致页面分裂、随机访问磁盘,聚簇索引分裂(对于使用聚簇索引的存储引擎)。
2、索引入门
对于任何DBMS,索引都是进行优化的最主要的因素。对于少量的数据,没有合适的索引影响不是很大,但是,当随着数据量的增加,性能会急剧下降。
如果对多列进行索引(组合索引),列的顺序非常重要,MySQL仅能对索引最左边的前缀进行有效的查找。例如:
假设存在组合索引it1c1c2(c1,c2),查询语句select * from t1 where c1=1 andc2=2能够使用该索引。查询语句select * from t1 where c1=1也能够使用该索引。但是,查询语句select * fromt1 where c2=2不能够使用该索引,因为没有组合索引的引导列,即,要想使用c2列进行查找,必需出现c1等于某值。

2.1、索引的类型
索引是在存储引擎中实现的,而不是在服务器层中实现的。所以,每种存储引擎的索引都不一定完全相同,并不是所有的存储引擎都支持所有的索引类型。
2.1.1、B-Tree索引
假设有如下一个表:


CREATE TABLE People (
   last_name varchar(50)    not null,
   first_name varchar(50)    not null,
   dob        date           not null,
   gender     enum('m', 'f') not null,
   key(last_name, first_name, dob)
);

其索引包含表中每一行的last_name、first_name和dob列。其结构大致如下:



3.1.2、按primary key的顺序插入行(InnoDB)
如果你用InnoDB,而且不需要特殊的聚簇索引,一个好的做法就是使用代理主键(surrogatekey)——独立于你的应用中的数据。最简单的做法就是使用一个AUTO_INCREMENT的列,这会保证记录按照顺序插入,而且能提高使用primary key进行连接的查询的性能。应该尽量避免随机的聚簇主键,例如,字符串主键就是一个不好的选择,它使得插入操作变得随机。

3.2、覆盖索引(Covering Indexes)
如果索引包含满足查询的所有数据,就称为覆盖索引。覆盖索引是一种非常强大的工具,能大大提高查询性能。只需要读取索引而不用读取数据有以下一些优点:
(1)索引项通常比记录要小,所以MySQL访问更少的数据;
(2)索引都按值的大小顺序存储,相对于随机访问记录,需要更少的I/O;
(3)大多数据引擎能更好的缓存索引。比如MyISAM只缓存索引。
(4)覆盖索引对于InnoDB表尤其有用,因为InnoDB使用聚集索引组织数据,如果二级索引中包含查询所需的数据,就不再需要在聚集索引中查找了。
覆盖索引不能是任何索引,只有B-TREE索引存储相应的值。而且不同的存储引擎实现覆盖索引的方式都不同,并不是所有存储引擎都支持覆盖索引(Memory和Falcon就不支持)。
对于索引覆盖查询(index-covered query),使用EXPLAIN时,可以在Extra一列中看到“Usingindex”。例如,在sakila的inventory表中,有一个组合索引(store_id,film_id),对于只需要访问这两列的查询,MySQL就可以使用索引,如下:

mysql> EXPLAIN SELECT store_id, film_id FROM sakila.inventory\G
*************************** 1. row ***************************
           id: 1
select_type: SIMPLE
        table: inventory
         type: index
possible_keys: NULL
          key: idx_store_id_film_id
      key_len: 3
          ref: NULL
         rows: 5007
        Extra: Using index
1 row in set (0.17 sec)

在大多数引擎中,只有当查询语句所访问的列是索引的一部分时,索引才会覆盖。但是,InnoDB不限于此,InnoDB的二级索引在叶子节点中存储了primarykey的值。因此,sakila.actor表使用InnoDB,而且对于是last_name上有索引,所以,索引能覆盖那些访问actor_id的查询,如:


mysql> EXPLAIN SELECT actor_id, last_name
    -> FROM sakila.actor WHERE last_name = 'HOPPER'\G
*************************** 1. row ***************************
           id: 1
select_type: SIMPLE
        table: actor
         type: ref
possible_keys: idx_actor_last_name
          key: idx_actor_last_name
      key_len: 137
          ref: const
         rows: 2
        Extra: Using where; Using index


3.3、利用索引进行排序
MySQL中,有两种方式生成有序结果集:一是使用filesort,二是按索引顺序扫描。利用索引进行排序操作是非常快的,而且可以利用同一索引同时进行查找和排序操作。当索引的顺序与ORDERBY中的列顺序相同且所有的列是同一方向(全部升序或者全部降序)时,可以使用索引来排序。如果查询是连接多个表,仅当ORDERBY中的所有列都是第一个表的列时才会使用索引。其它情况都会使用filesort。

create table actor(
actor_id int unsigned NOT NULL AUTO_INCREMENT,
name      varchar(16) NOT NULL DEFAULT '',
password        varchar(16) NOT NULL DEFAULT '',
PRIMARY KEY(actor_id),
KEY     (name)
) ENGINE=InnoDB
insert into actor(name,password) values('cat01','1234567');
insert into actor(name,password) values('cat02','1234567');
insert into actor(name,password) values('ddddd','1234567');
insert into actor(name,password) values('aaaaa','1234567');



mysql> explain select actor_id from actor order by actor_id \G
*************************** 1. row ***************************
           id: 1
select_type: SIMPLE
        table: actor
         type: index
possible_keys: NULL
          key: PRIMARY
      key_len: 4
          ref: NULL
         rows: 4
        Extra: Usingindex
1 row in set (0.00 sec)

mysql> explain select actor_id from actor order by password \G
*************************** 1. row ***************************
           id: 1
select_type: SIMPLE
        table: actor
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 4
        Extra: Usingfilesort
1 row in set (0.00 sec)

mysql> explain select actor_id from actor order by name \G
*************************** 1. row ***************************
           id: 1
select_type: SIMPLE
        table: actor
         type: index
possible_keys: NULL
          key: name
      key_len: 18
          ref: NULL
         rows: 4
        Extra: Usingindex
1 row in set (0.00 sec)

当MySQL不能使用索引进行排序时,就会利用自己的排序算法(快速排序算法)在内存(sortbuffer)中对数据进行排序,如果内存装载不下,它会将磁盘上的数据进行分块,再对各个数据块进行排序,然后将各个块合并成有序的结果集(实际上就是外排序)。对于filesort,MySQL有两种排序算法。
(1)两遍扫描算法(Two passes)
实现方式是先将须要排序的字段和可以直接定位到相关行数据的指针信息取出,然后在设定的内存(通过参数sort_buffer_size设定)中进行排序,完成排序之后再次通过行指针信息取出所需的Columns。
注:该算法是4.1之前采用的算法,它需要两次访问数据,尤其是第二次读取操作会导致大量的随机I/O操作。另一方面,内存开销较小。
(3)    一次扫描算法(single pass)
该算法一次性将所需的Columns全部取出,在内存中排序后直接将结果输出。
注:从 MySQL 4.1版本开始使用该算法。它减少了I/O的次数,效率较高,但是内存开销也较大。如果我们将并不需要的Columns也取出来,就会极大地浪费排序过程所需要的内存。在 MySQL 4.1 之后的版本中,可以通过设置 max_length_for_sort_data 参数来控制 MySQL选择第一种排序算法还是第二种。当取出的所有大字段总大小大于 max_length_for_sort_data 的设置时,MySQL就会选择使用第一种排序算法,反之,则会选择第二种。为了尽可能地提高排序性能,我们自然更希望使用第二种排序算法,所以在Query 中仅仅取出需要的 Columns 是非常有必要的。

当对连接操作进行排序时,如果ORDERBY仅仅引用第一个表的列,MySQL对该表进行filesort操作,然后进行连接处理,此时,EXPLAIN输出“Usingfilesort”;否则,MySQL必须将查询的结果集生成一个临时表,在连接完成之后进行filesort操作,此时,EXPLAIN输出“Using temporary;Using filesort”。

3.4、索引与加锁
索引对于InnoDB非常重要,因为它可以让查询锁更少的元组。这点十分重要,因为MySQL5.0中,InnoDB直到事务提交时才会解锁。有两个方面的原因:首先,即使InnoDB行级锁的开销非常高效,内存开销也较小,但不管怎么样,还是存在开销。其次,对不需要的元组的加锁,会增加锁的开销,降低并发性。
InnoDB仅对需要访问的元组加锁,而索引能够减少InnoDB访问的元组数。但是,只有在存储引擎层过滤掉那些不需要的数据才能达到这种目的。一旦索引不允许InnoDB那样做(即达不到过滤的目的),MySQL服务器只能对InnoDB返回的数据进行WHERE操作,此时,已经无法避免对那些元组加锁了:InnoDB已经锁住那些元组,服务器无法解锁了。
来看个例子:

create table actor(
actor_id int unsigned NOT NULL AUTO_INCREMENT,
name      varchar(16) NOT NULL DEFAULT '',
password        varchar(16) NOT NULL DEFAULT '',
PRIMARY KEY(actor_id),
KEY     (name)
) ENGINE=InnoDB
insert into actor(name,password) values('cat01','1234567');
insert into actor(name,password) values('cat02','1234567');
insert into actor(name,password) values('ddddd','1234567');
insert into actor(name,password) values('aaaaa','1234567');

SET AUTOCOMMIT=0;
BEGIN;
SELECT actor_id FROM actor WHERE actor_id < 4
AND actor_id <> 1 FOR UPDATE;

该查询仅仅返回2---3的数据,实际已经对1---3的数据加上排它锁了。InnoDB锁住元组1是因为MySQL的查询计划仅使用索引进行范围查询(而没有进行过滤操作,WHERE中第二个条件已经无法使用索引了):

mysql> EXPLAIN SELECT actor_id FROM test.actor
    -> WHERE actor_id < 4 AND actor_id <> 1 FOR UPDATE \G
*************************** 1. row ***************************
           id: 1
select_type: SIMPLE
        table: actor
         type: index
possible_keys: PRIMARY
          key: PRIMARY
      key_len: 4
          ref: NULL
         rows: 4
        Extra: Using where; Using index
1 row in set (0.00 sec)

mysql>

表明存储引擎从索引的起始处开始,获取所有的行,直到actor_id<4为假,服务器无法告诉InnoDB去掉元组1。
为了证明row 1已经被锁住,我们另外建一个连接,执行如下操作:

SET AUTOCOMMIT=0;
BEGIN;
SELECT actor_id FROM actor WHERE actor_id = 1 FOR UPDATE;


该查询会被挂起,直到第一个连接的事务提交释放锁时,才会执行(这种行为对于基于语句的复制(statement-based replication)是必要的)。
如上所示,当使用索引时,InnoDB会锁住它不需要的元组。更糟糕的是,如果查询不能使用索引,MySQL会进行全表扫描,并锁住每一个元组,不管是否真正需要。

展开
收起
老毛哈哈 2015-09-02 10:07:42 11350 0
1 条回答
写回答
取消 提交回答
  • 解决方案工程师,负责为企业规划上云迁移方案和云上架构设计,在网站建设开发和云计算领域有多年经验,专注于Linux平台的系统维护以及应用部署。致力于以场景化的方式让云计算,用更加通俗易懂的方式让更多人体验云计算,让云端的计算更质朴的落地。
    排版可以再优化。
    这种帖子,以后最好发到开发者板块
    2015-09-02 11:01:20
    赞同 展开评论 打赏
问答排行榜
最热
最新

相关电子书

更多
搭建电商项目架构连接MySQL 立即下载
搭建4层电商项目架构,实战连接MySQL 立即下载
PolarDB MySQL引擎重磅功能及产品能力盛大发布 立即下载

相关镜像