开发者社区> 问答> 正文

解析Apache Spark Scala中的数据org.apache.spark.SparkException:尝试使用textinputformat.record.delimiter时出现任务无序列化错误

输入文件:

DATE

2018-11-16T06:3937
Linux hortonworks 3.10.0-514.26.2.el7.x86_64 #1 SMP Fri Jun 30 05:26:04 UTC 2017 x86_64 x86_64 x86_64 GNU/Linux
06:39:37 up 100 days, 1:04, 2 users, load average: 9.01, 8.30, 8.48
06:30:01 AM all 6.08 0.00 2.83 0.04 0.00 91.06

DATE

2018-11-16T06:4037
Linux cloudera 3.10.0-514.26.2.el7.x86_64 #1 SMP Fri Jun 30 05:26:04 UTC 2017 x86_64 x86_64 x86_64 GNU/Linux
06:40:37 up 100 days, 1:05, 28 users, load average: 8.39, 8.26, 8.45
06:40:01 AM all 6.92 1.11 1.88 0.04 0.00 90.05
所需输出:

2018-11-16T06:3937,hortonworks, 2 users
2018-11-16T06:4037,cloudera, 28 users
我正试图通过Scala获取Spark。尝试使用Spark 2.3.1和scala 2.11.6解析此输入文件。这是我的代码。

import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat
import org.apache.hadoop.io.Text
import org.apache.hadoop.io.LongWritable
import org.apache.spark.{SparkConf, SparkContext}

object parse_stats extends App {

case class LoadSchema(date:String)

val conf = new SparkConf().setAppName("ParseStats").setMaster("local[*]")
val sc = new SparkContext(conf)

val hadoopConf = new Configuration(sc.hadoopConfiguration)
hadoopConf.set("textinputformat.record.delimiter","___DATE___")

val input = sc.newAPIHadoopFile("C:\Users\rohit\Documents\dataset\sys_stats.log",classOf[TextInputFormat],classOf[LongWritable],classOf[Text],hadoopConf).map(line=>line._2.toString)

lazy val date_pattern="[0-9]+-+-+T+:+".r
lazy val uname_pattern="Linux+[GNU/Linux]".r
lazy val cpu_regex="[ 0-9]+:+:+[0-9a-zA-Z, : .]+load average[0-9 . ,]+".r

val transformRDD = input.map{eachline=>((if(date_pattern.pattern.matcher(eachline).matches()) eachline), //collects date

(if(uname_pattern.pattern.matcher(eachline).matches()) eachline.split("\\s+")(1).trim() ), //collects hostname
(if (cpu_regex.pattern.matcher(eachline).matches()) eachline.split(",")(2).trim()) //collects cpu users

)
}

transformRDD.collect().foreach(println)
}
如果从Intellij运行此代码,我得到低于输出。

((),(),())
((),(),())
((),(),())
如果我从spark-shell运行,我得到以下错误:

scala> import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.conf.Configuration

scala> import org.apache.hadoop.mapreduce.lib.input.TextInputFormat
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat

scala> import org.apache.hadoop.io.Text
import org.apache.hadoop.io.Text

scala> import org.apache.hadoop.io.LongWritable
import org.apache.hadoop.io.LongWritable

scala> import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.{SparkConf, SparkContext}

scala> val hadoopConf = new Configuration(sc.hadoopConfiguration)
hadoopConf: org.apache.hadoop.conf.Configuration = Configuration: core-default.xml, core-site.xml, mapred-default.xml, mapred-site.xml, yarn-default.xml, yarn-site.xml, hdfs-default.xml, hdfs-site.xml, __spark_hadoop_conf__.xml

scala> hadoopConf.set("textinputformat.record.delimiter","___DATE___")

scala> val input = sc.newAPIHadoopFile("C:\Users\rnimmal1\Documents\dataset\sys_stats.log",classOf[TextInputFormat],classOf[LongWritable],classOf[Text],hadoopConf).map(line=>line._2.toString)
input: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[16] at map at :37

scala>

scala> lazy val date_pattern="[0-9]+-+-+T+:+".r
date_pattern: scala.util.matching.Regex =

scala> lazy val uname_pattern="Linux+[GNU/Linux]".r
uname_pattern: scala.util.matching.Regex =

scala> lazy val cpu_regex="[ 0-9]+:+:+[0-9a-zA-Z, : .]+load average[0-9 . ,]+".r
cpu_regex: scala.util.matching.Regex =

scala>

scala> val transformRDD = input.map{eachline=>((if(date_pattern.pattern.matcher(eachline).matches()) eachline), //collects date

 |     (if(uname_pattern.pattern.matcher(eachline).matches()) eachline.split("\\s+")(1).trim() ), //collects hostname
 |     (if (cpu_regex.pattern.matcher(eachline).matches()) eachline.split(",")(2).trim()) //collects cpu users
 |   )
 |   }

org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:345)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:335)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:159)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2299)
at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:371)
at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:370)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
at org.apache.spark.rdd.RDD.map(RDD.scala:370)
... 54 elided
Caused by: java.io.NotSerializableException: org.apache.hadoop.conf.Configuration
Serialization stack:

    - object not serializable (class: org.apache.hadoop.conf.Configuration, value: Configuration: core-default.xml, core-site.xml, mapred-default.xml, mapred-site.xml, yarn-default.xml, yarn-site.xml, hdfs-default.xml, hdfs-site.xml, __spark_hadoop_conf__.xml)
    - field (class: $iw, name: hadoopConf, type: class org.apache.hadoop.conf.Configuration)
    - object (class $iw, $iw@63fa0b9)
    - field (class: $iw, name: $iw, type: class $iw)
    - object (class $iw, $iw@3f4b52fa)
    - field (class: $iw, name: $iw, type: class $iw)
    - object (class $iw, $iw@338f9bb5)
    - field (class: $iw, name: $iw, type: class $iw)
    - object (class $iw, $iw@3d63becf)
    - field (class: $iw, name: $iw, type: class $iw)
    - object (class $iw, $iw@3aca7082)
    - field (class: $iw, name: $iw, type: class $iw)
    - object (class $iw, $iw@4ccfd904)
    - field (class: $iw, name: $iw, type: class $iw)
    - object (class $iw, $iw@6e4e7a62)
    - field (class: $iw, name: $iw, type: class $iw)
    - object (class $iw, $iw@5aaab2b0)
    - field (class: $iw, name: $iw, type: class $iw)
    - object (class $iw, $iw@5c51a7eb)
    - field (class: $line36.$read, name: $iw, type: class $iw)
    - object (class $line36.$read, $line36.$read@2ba3b4a6)
    - field (class: $iw, name: $line36$read, type: class $line36.$read)
    - object (class $iw, $iw@6559f04e)
    - field (class: $iw, name: $iw, type: class $iw)
    - object (class $iw, $iw@8f7cbcc)
    - field (class: $iw, name: $iw, type: class $iw)
    - object (class $iw, $iw@465b16bb)
    - field (class: $iw, name: $iw, type: class $iw)
    - object (class $iw, $iw@373efaa2)
    - field (class: $iw, name: $iw, type: class $iw)
    - object (class $iw, $iw@5f2896fa)
    - field (class: $iw, name: $iw, type: class $iw)
    - object (class $iw, $iw@f777d41)
    - field (class: $iw, name: $iw, type: class $iw)
    - object (class $iw, $iw@43ec41d7)
    - field (class: $iw, name: $iw, type: class $iw)
    - object (class $iw, $iw@61c0a61)
    - field (class: $line38.$read, name: $iw, type: class $iw)
    - object (class $line38.$read, $line38.$read@10d1f6da)
    - field (class: $iw, name: $line38$read, type: class $line38.$read)
    - object (class $iw, $iw@2095e085)
    - field (class: $iw, name: $outer, type: class $iw)
    - object (class $iw, $iw@380cb7e3)
    - field (class: $anonfun$1, name: $outer, type: class $iw)
    - object (class $anonfun$1, <function1>)

at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:46)
at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:100)
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:342)
... 63 more

展开
收起
社区小助手 2019-01-02 15:23:27 6401 0
1 条回答
写回答
取消 提交回答
  • 社区小助手是spark中国社区的管理员,我会定期更新直播回顾等资料和文章干货,还整合了大家在钉群提出的有关spark的问题及回答。

    更改__DATA__管道“|”后 ,下面的代码片段产生所需的输出。请注意,我使用的是Windows平台,因此我将替换“ r n”。请检查

    val spark = SparkSession.builder().appName("Spark_test").master("local[*]").getOrCreate()

    import spark.implicits._

    val file1 = spark.sparkContext.textFile("./in/machine_logs.txt")

    spark.sparkContext.hadoopConfiguration.set("textinputformat.record.delimiter","|")

    val file2 = file1.filter( line => { val x = line.split("""n"""); x.length > 5 } )

                    .map( line => { val x = line.split("""\n""")
                      val p = x(2).replaceAll("\\r","") // not needed if Unix platform
                      val q = x(3).split(" ")(1)
                      val r = x(4).split(",")(2)
                      (p + "," + q + "," + r)
                    } )
    

    file2.collect.foreach(println)
    //file2.saveAsTextFile("./in/machine_logs.out") --> comment above line and uncomment this line to save in file
    输出:

    2018-11-16T06:3937,hortonworks, 2 users
    2018-11-16T06:4037,cloudera, 28 users
    UPDATE1:

    使用正则表达式匹配:

    val date_pattern="[0-9]+-+-+T+:+".r
    val uname_pattern="(Linux) (.*?) [0-9a-zA-z-#() . : _ /]+(GNU/Linux)".r
    val cpu_regex="""(.+),(.*?),s+(load average):+""".r
    val file2 = file1.filter( line => { val x = line.split("""n"""); x.length > 5 } )
    .map( line => {

          var q = ""; var r = "";
          val p = date_pattern.findFirstIn(line).mkString
          uname_pattern.findAllIn(line).matchData.foreach(m=> {q = m.group(2).mkString} )
          cpu_regex.findAllIn(line).matchData.foreach(m=> {r = m.group(2).mkString} )
          (p + "," + q + "," + r)

    } )
    file2.collect.foreach(println)

    2019-07-17 23:24:26
    赞同 展开评论 打赏
问答排行榜
最热
最新

相关电子书

更多
Hybrid Cloud and Apache Spark 立即下载
Scalable Deep Learning on Spark 立即下载
Comparison of Spark SQL with Hive 立即下载

相关镜像