开发者社区> 问答> 正文

如何使用spark将kafka主题中的writeStream数据写入hdfs?

我一直试图让这段代码工作几个小时:

val spark = SparkSession.builder()
.appName("Consumer")
.getOrCreate()

spark.readStream
.format("kafka")
.option("kafka.bootstrap.servers", url)
.option("subscribe", topic)
.load()
.select("value")
.writeStream
.format(fileFormat)
.option("path", filePath)
.option("checkpointLocation", "/tmp/checkpoint")
.start()
.awaitTermination()
它给出了这个例外:

Logical Plan:
Project [value#8]
+- StreamingExecutionRelation KafkaV2[Subscribe[MyTopic]], [key#7, value#8, topic#9, partition#10, offset#11L, timestamp#12, timestampType#13]

at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:295)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:189)
Caused by: java.lang.ClassCastException: org.apache.spark.sql.execution.streaming.SerializedOffset cannot be cast to org.apache.spark.sql.sources.v2.reader.streaming.Offset
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$1$$anonfun$apply$9.apply(MicroBatchExecution.scala:405)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$1$$anonfun$apply$9.apply(MicroBatchExecution.scala:390)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
at org.apache.spark.sql.execution.streaming.StreamProgress.foreach(StreamProgress.scala:25)
at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:241)
at org.apache.spark.sql.execution.streaming.StreamProgress.flatMap(StreamProgress.scala:25)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$1.apply(MicroBatchExecution.scala:390)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$1.apply(MicroBatchExecution.scala:390)
at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:271)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch(MicroBatchExecution.scala:389)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply$mcV$sp(MicroBatchExecution.scala:133)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:121)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:121)
at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:271)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1.apply$mcZ$sp(MicroBatchExecution.scala:121)
at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:56)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.runActivatedStream(MicroBatchExecution.scala:117)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:279)
我不明白发生了什么,我只是试图使用spark streaming将kafka主题的数据写入HDFS。为什么这么难?我怎么能这样做?

我得到了批处理版本才能正常工作:

spark.read
.format("kafka")
.option("kafka.bootstrap.servers", url)
.option("subscribe", topic)
.load()
.selectExpr("CAST(value AS String)")
.write
.format(fileFormat)
.save(filePath)

展开
收起
社区小助手 2019-01-02 14:47:05 6829 0
2 条回答
写回答
取消 提交回答
  • 不明觉厉

    2019-07-17 23:24:23
    赞同 1 展开评论 打赏
  • 社区小助手是spark中国社区的管理员,我会定期更新直播回顾等资料和文章干货,还整合了大家在钉群提出的有关spark的问题及回答。

    你遇到结构化流媒体中的已知错误https://issues.apache.org/jira/browse/SPARK-25257

    这是因为磁盘的偏移量从不反序列化,修复程序将在即将发布的版本中合并

    2019-07-17 23:24:23
    赞同 展开评论 打赏
问答排行榜
最热
最新

相关电子书

更多
Java Spring Boot开发实战系列课程【第16讲】:Spring Boot 2.0 实战Apache Kafka百万级高并发消息中间件与原理解析 立即下载
MaxCompute技术公开课第四季 之 如何将Kafka数据同步至MaxCompute 立即下载
消息队列kafka介绍 立即下载

相关实验场景

更多