开发者社区> 问答> 正文

深度学习Caffe框架中,Solver文件和Net文件分别是什么,怎么编写?

已解决

在PAI平台深度学习Caffe框架实现图像分类的模型训练中,Caffe配置文件需要编写Solver文件和Net文件,不知道怎么写法

展开
收起
ali小鱼 2017-06-28 16:25:08 3373 0
2 条回答
写回答
取消 提交回答
  • 采纳回答

    net 网络模型:
    name: "LeNet"
    layer {
    name: "data"
    type: "Input"
    top: "data"
    input_param { shape: { dim: 64 dim: 1 dim: 28 dim: 28 } }
    }
    layer {
    name: "conv1"
    type: "Convolution"
    bottom: "data"
    top: "conv1"
    param {

    lr_mult: 1

    }
    param {

    lr_mult: 2

    }
    convolution_param {

    num_output: 20
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }

    }
    }
    layer {
    name: "pool1"
    type: "Pooling"
    bottom: "conv1"
    top: "pool1"
    pooling_param {

    pool: MAX
    kernel_size: 2
    stride: 2

    }
    }
    layer {
    name: "conv2"
    type: "Convolution"
    bottom: "pool1"
    top: "conv2"
    param {

    lr_mult: 1

    }
    param {

    lr_mult: 2

    }
    convolution_param {

    num_output: 50
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }

    }
    }
    layer {
    name: "pool2"
    type: "Pooling"
    bottom: "conv2"
    top: "pool2"
    pooling_param {

    pool: MAX
    kernel_size: 2
    stride: 2

    }
    }
    layer {
    name: "ip1"
    type: "InnerProduct"
    bottom: "pool2"
    top: "ip1"
    param {

    lr_mult: 1

    }
    param {

    lr_mult: 2

    }
    inner_product_param {

    num_output: 500
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }

    }
    }
    layer {
    name: "relu1"
    type: "ReLU"
    bottom: "ip1"
    top: "ip1"
    }
    layer {
    name: "ip2"
    type: "InnerProduct"
    bottom: "ip1"
    top: "ip2"
    param {

    lr_mult: 1

    }
    param {

    lr_mult: 2

    }
    inner_product_param {

    num_output: 10
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }

    }
    }
    layer {
    name: "prob"
    type: "Softmax"
    bottom: "ip2"
    top: "prob"
    }

    solver:

    The train/test net protocol buffer definition

    net: "examples/mnist/lenet_train_test.prototxt"

    test_iter specifies how many forward passes the test should carry out.

    In the case of MNIST, we have test batch size 100 and 100 test iterations,

    covering the full 10,000 testing images.

    test_iter: 100

    Carry out testing every 500 training iterations.

    test_interval: 500

    The base learning rate, momentum and the weight decay of the network.

    base_lr: 0.01
    momentum: 0.9
    weight_decay: 0.0005

    The learning rate policy

    lr_policy: "inv"
    gamma: 0.0001
    power: 0.75

    Display every 100 iterations

    display: 100

    The maximum number of iterations

    max_iter: 10000

    snapshot intermediate results

    snapshot: 5000
    snapshot_prefix: "examples/mnist/lenet"

    solver mode: CPU or GPU

    solver_mode: CPU

    2019-07-17 21:20:33
    赞同 1 展开评论 打赏
  • 现在没法配置 --weights参数吧?

    2019-07-17 21:20:33
    赞同 展开评论 打赏
问答排行榜
最热
最新

相关电子书

更多
深度学习的最新进展 立即下载
搜狗深度学习技术在广告推荐领域的应用 立即下载
深度学习在电商搜索和聊天机器人中的应用 立即下载