Flink / Scala - DataSet & DataStream Sink 输出数据详解

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
Elasticsearch Serverless通用抵扣包,测试体验金 200元
简介: 一.引言Flink 的数据处理主要分三步,第一步 Source 为数据源,分为 DataSet 和 DataStreaming ,后一步为 Transformation 负责处理和转换数据,针对不同的 DataSource,Transformation 可能会存在差异,最后一步是 sink 负责将结果输出。前面介绍了 DataSet 的 Source 和 Transformation,这里介绍下 DataSet 和 DataStreaming 的 Sink 相关 API。Tips:下述代码区

 一.引言

Flink 的数据处理主要分三步,第一步 Source 为数据源,分为 DataSet 和 DataStreaming ,后一步为 Transformation 负责处理和转换数据,针对不同的 DataSource,Transformation 可能会存在差异,最后一步是 sink 负责将结果输出。前面介绍了 DataSet 的 Source 和 Transformation,这里介绍下 DataSet 和 DataStreaming 的 Sink 相关 API。

image.gif编辑

Tips:

下述代码区分为 DataSet 和 DataStreaming,所以执行环境会有不同:

// 二者都需要引入
    import org.apache.flink.streaming.api.scala._
    // DataSet 选择
    val env = ExecutionEnvironment.getExecutionEnvironment
    // DataStreaming 选择
    val env = StreamExecutionEnvironment.getExecutionEnvironment

image.gif

二.DataSet

1.writeAsText

A.存储在本机和HDFS

writeAsText 可以根据地址的不同自适应的存储在 Local FileSystem 和 Hdfs System 上:

// 读取本地路径并输出到本地
    val textLines = env.readTextFile("InputPath")
    textLines.writeAsText("OutputPath")
    // 读取 Hdfs 路径并输出到 Hdfs
    val textLinesOnHdfs = env.readTextFile("hdfs://nnHost:nnPort/file")
    textLinesOnHdfs.writeAsText("hdfs://nnHost:nnPort/my/result/on/localFS")

image.gif

B.模式选择

writeAsText 有下述两种模式可以选择:

· WriteMode.NO_OVERWRITE : 指定路径不存在文件,执行写操作

· WriteMode.OVERWRITE:指定路径不存在文件,执行写操作;存在文件则进行覆盖,注意这里不是追加

import org.apache.flink.core.fs.FileSystem.WriteMode
    val textLines = env.readTextFile("InputPath")
    textLines.writeAsText("OutputPath", WriteMode.OVERWRITE)

image.gif

C.输出数量

writeAsText 提供 setParallelism 方法,该方法控制输出文件数量,如果输出路径为 output,不设置该方法时会生成 output 文件夹并在文件夹下生成多个文件,如果 setParallelism(1) ,则会生成 output 文件并将全部输出写入该文件中:

val textLines = env.readTextFile("InputPath")
    textLines.writeAsText("OutputPath").setParallelism(1)

image.gif

2.writeAsCsv

writeAsCsv 将输出文件存储为 csv 格式 ,共提供4个参数:

def writeAsCsv(filePath : _root_.scala.Predef.String, 
                rowDelimiter : _root_.scala.Predef.String, 
                fieldDelimiter : _root_.scala.Predef.String, 
                writeMode : org.apache.flink.core.fs.FileSystem.WriteMode) : org.apache.flink.api.java.operators.DataSink[T] = { /* compiled code */ }

image.gif

·filePath:输出路径

· rowDelimiter:行分割符

· fieldDelimiter:csv 文件各字符分隔符

· wirteMode:输出模式

A.默认输出

val values: DataSet[(String, Int, Double)] = env.fromElements(("A", 1, 2D), ("B", 1, 2D), ("C", 1, 2D), ("D", 1, 2D))
    values.writeAsCsv("outputV1.csv")

image.gif

A,1,2.0
B,1,2.0
C,1,2.0
D,1,2.0

image.gif

B.选择参数输出

每行数据 \n 分割,每个元祖的字符 "|" 分割

val values: DataSet[(String, Int, Double)] = env.fromElements(("A", 1, 2D), ("B", 1, 2D), ("C", 1, 2D), ("D", 1, 2D))
    values.writeAsCsv("outputV2.csv", "\n", "|")

image.gif

A|1|2.0
B|1|2.0
C|1|2.0
D|1|2.0

image.gif

3.Stdout,Stderr

print \ printToErr 一般多见于测试数据输出,可以将计算结果输出到控制台的 Stdout 或者 Stderr 上。

val textLines = env.readTextFile("InputPath")
    textLines.print()
    textLines.printToErr()

image.gif

image.gif编辑

4.Output with OutputFormat

数据也可以根据自己自定义的 Format 进行输出:

val textLines = env.readTextFile("InputPath")
    val textFormat = new TextOutputFormat[String](new Path("OutputPath"))
    textLines.output(textFormat).setParallelism(1)

image.gif

Tips:

Flink 和 Spark 类似,其内部执行逻辑也是 Lazy Mode,因此 writeAsText,writeAsCsv,output 方法均不会触发 Flink 执行代码逻辑,除了 print 和 printToErr 可以直接触发,上述操作需要再额外调用 env.execute() 才会执行 :

env.execute()

image.gif

三.DataStream

DataStream 可以将数据写入文件、标准输出、标准错误输出和 Socket。除了官方提供的基本 Sink 组件外,Flink 还额外支持了下述连接器,可以很好地实现工程交互,截止 v1.14.3,Flink 支持一下第三方 Connector:

Connector 类别 支持方式
Apache Kafka source/sink
Apache Cassandra sink
Amazon Kinesis Streams source/sink
Elasticsearch sink
FileSystem sink
RabbitMQ source/sink
Google PubSub source/sink
Hybrid Source  source
Apache NiFi  source/sink
Apache Pulsar source
Twitter Streaming API source
JDBC sink

1.Write to Socket

DataSet 和 DataStream 相比后者比前者多一个 WriteToSocket 方法,支持将流数据写入到 Socket

streamSource.writeToSocket("ip", port, new SimpleStringSchema());

image.gif

可以通过上述方法将数据写入 Socket,例如写入本机 -> ip = "localhost",port=9999,后续通过下述方法即可监听到上述写到 Socket 中的数据并进行后续的处理逻辑。

env.socketTextStream("localhost", 9999)...

image.gif

2.Kafka Consumer / Producer

A.Consumer

Flink 的 Kafka consumer 称为 FlinkKafkaConsumer。它提供对一个或多个 Kafka topics 的访问。需要引入如下依赖:

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-kafka_2.11</artifactId>
    <version>1.14.3</version>
</dependency>

image.gif

Kafka 配置 :

val properties = new Properties()
properties.setProperty("bootstrap.servers", "localhost:9092")
properties.setProperty("group.id", "test")
val stream = env
    .addSource(new FlinkKafkaConsumer[String]("topic", new SimpleStringSchema(), properties))

image.gif

共有三个参数需要填写:

Topic: kafka 消费 topic 名称或名称列表

StringSchema: 用于反序列化 kafka 数据的 DeserializationSchema 或者KafkaDeserializationSchema,内部主要需要复写 deserialize 方法用于将 kafka 数据转换并写生成 DataStream。

Properties:kafka 配置,除相关配置外,还需要提供 bootstrao.servers 和 消费的 group_id。

生成 DataStream 并消费 :

val env = StreamExecutionEnvironment.getExecutionEnvironment()
val myConsumer = new FlinkKafkaConsumer[String](...)
myConsumer.setStartFromEarliest()      // 尽可能从最早的记录开始
myConsumer.setStartFromLatest()        // 从最新的记录开始
myConsumer.setStartFromTimestamp(...)  // 从指定的时间开始(毫秒)
myConsumer.setStartFromGroupOffsets()  // 默认的方法
val stream = env.addSource(myConsumer)
...

image.gif

B.Producer

Flink Kafka Producer 被称为 FlinkKafkaProducer。它允许将消息流写入一个或多个 Kafka topic,需要填写生成 kafka 的 Topic 并将相关输出的参数配置到 properties 中,最后一个参数控制容错语义。

val stream: DataStream[String] = ...
val properties = new Properties
properties.setProperty("bootstrap.servers", "localhost:9092")
val myProducer = new FlinkKafkaProducer[String](
        "my-topic",               // 目标 topic
        new SimpleStringSchema(), // 序列化 schema
        properties,               // producer 配置
        FlinkKafkaProducer.Semantic.EXACTLY_ONCE) // 容错
stream.addSink(myProducer)

image.gif

3.Elasticsearch

Sink 也支持与 ES 交互,写入 ES 库中,由于版本比较多,因此 maven 也有较多选择:

ES 5.x  
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-elasticsearch5_2.11</artifactId>
    <version>1.14.3</version>
</dependency>
ES 6.x  
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-elasticsearch6_2.11</artifactId>
    <version>1.14.3</version>
</dependency>
ES 7 及更高版本  
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-elasticsearch7_2.11</artifactId>
    <version>1.14.3</version>
</dependency>

image.gif

下述 Demo 适用于 scala + ES 6.x 及以上:

import org.apache.flink.api.common.functions.RuntimeContext
import org.apache.flink.streaming.api.datastream.DataStream
import org.apache.flink.streaming.connectors.elasticsearch.ElasticsearchSinkFunction
import org.apache.flink.streaming.connectors.elasticsearch.RequestIndexer
import org.apache.flink.streaming.connectors.elasticsearch6.ElasticsearchSink
import org.apache.http.HttpHost
import org.elasticsearch.action.index.IndexRequest
import org.elasticsearch.client.Requests
import java.util.ArrayList
import java.util.List
val input: DataStream[String] = ...
val httpHosts = new java.util.ArrayList[HttpHost]
httpHosts.add(new HttpHost("127.0.0.1", 9200, "http"))
httpHosts.add(new HttpHost("10.2.3.1", 9200, "http"))
val esSinkBuilder = new ElasticsearchSink.Builder[String](
  httpHosts,
  new ElasticsearchSinkFunction[String] {
     def process(element: String, ctx: RuntimeContext, indexer: RequestIndexer) {
          val json = new java.util.HashMap[String, String]
          json.put("data", element)
          val rqst: IndexRequest = Requests.indexRequest
            .index("my-index")
            .`type`("my-type")
            .source(json)
          indexer.add(rqst)
     } 
  }
// 批量请求的配置;下面的设置使 sink 在接收每个元素之后立即提交,否则这些元素将被缓存起来
esSinkBuilder.setBulkFlushMaxActions(1)
// 为内部创建的 REST 客户端提供一个自定义配置信息的 RestClientFactory
esSinkBuilder.setRestClientFactory(new RestClientFactory {
  override def configureRestClientBuilder(restClientBuilder: RestClientBuilder): Unit = {
       restClientBuilder.setDefaultHeaders(...)
       restClientBuilder.setMaxRetryTimeoutMillis(...)
       restClientBuilder.setPathPrefix(...)
       restClientBuilder.setHttpClientConfigCallback(...)
  }
})
// 最后,构建并添加 sink 到作业管道中
input.addSink(esSinkBuilder.build)

image.gif

4.自定义 Sink

import org.apache.flink.streaming.api.functions.sink.RichSinkFunction

image.gif

如上述方法不能满足工程需求,则可以自己定义 Sink 方式,这里需要继承 RichSinkFunction[T],T 为上一个 DataStream 的数据类型,并重写下述 3 个函数完成 Sink 需求:

· open(parameters: Configuration):初始化函数,负责初始化 sink 相关的连接和客户端 client

· invoke(value: T): 每个要 sink 的数据都用通过 invoke 方法并处理 T 最终写入

· close:关闭 open 函数启动的 connection 和 client

四.总结

上述方法简单介绍了 DataSet 和 DataStream 的常用 Sink 方式,Flink 主要优势还是体现在 DataStream 流式处理上,所以 DataSet 相对内容较少。Kafka + Flink 是非常常见的处理流程,所以上面主要给出了 Kafka + Flink 的相关示例,如有更多需求可参考官方 API 提供的更详细的方法 -> Flink Connectors

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
打赏
0
0
0
0
238
分享
相关文章
基于 Flink 的中国电信星海时空数据多引擎实时改造
本文整理自中国电信集团大数据架构师李新虎老师在Flink Forward Asia 2024的分享,围绕星海时空智能系统展开,涵盖四个核心部分:时空数据现状、实时场景多引擎化、典型应用及未来展望。系统日处理8000亿条数据,具备亚米级定位能力,通过Flink多引擎架构解决数据膨胀与响应时效等问题,优化资源利用并提升计算效率。应用场景包括运动状态识别、个体行为分析和群智感知,未来将推进湖仓一体改造与三维时空服务体系建设,助力数字化转型与智慧城市建设。
453 3
基于 Flink 的中国电信星海时空数据多引擎实时改造
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
本文介绍通过Flink CDC实现Oracle数据实时同步至崖山数据库(YashanDB)的方法,支持全量与增量同步,并涵盖新增、修改和删除的DML操作。内容包括环境准备(如JDK、Flink版本等)、Oracle日志归档启用、用户权限配置、增量日志记录设置、元数据迁移、Flink安装与配置、生成Flink SQL文件、Streampark部署,以及创建和启动实时同步任务的具体步骤。适合需要跨数据库实时同步方案的技术人员参考。
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
SpringBoot 通过集成 Flink CDC 来实时追踪 MySql 数据变动
通过详细的步骤和示例代码,您可以在 SpringBoot 项目中成功集成 Flink CDC,并实时追踪 MySQL 数据库的变动。
1100 43
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
563 0
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
513 0
实时计算 Flink版产品使用合集之支持sink到多分区的kafka ,还能保持有序吗
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
103 0
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
417 0
Flink CDC 在阿里云实时计算Flink版的云上实践

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问