分布式事务常见面试题解答

简介: 分布式事务常见面试题解答

分布式事务有哪些解决方案

1、基于XA协议的:两阶段提交和三阶段提交,需要数据库层面支持
2、基于事务补偿机制的:TCC,基于业务层面实现
3、本地消息表:基于本地数据库+mq,维护本地状态(进行中),通过mq调用服务,完成后响应一条消
息回调,将状态改成完成。需要配合定时任务扫表、重新发送消息调用服务,需要保证幂等
4、基于事务消息:mq

相比两阶段,三阶段有哪些改进

1、两阶段协议:
第一阶段( prepare ) :每个参与者执行本地事务但不提交,进入 ready 状态,并通知协调者已经准
备就绪。

第二阶段( commit ) 当协调者确认每个参与者都 ready 后,通知参与者进行 commit 操作;如果有
参与者 fail ,则发送 rollback 命令,各参与者做回滚。
问题:

  • 单点故障:一旦事务管理器出现故障,整个系统不可用(参与者都会阻塞住)
  • 数据不一致:在阶段二,如果事务管理器只发送了部分 commit 消息,此时网络发生异常,那么

只有部分参与者接收到 commit 消息,也就是说只有部分参与者提交了事务,使得系统数据不一
致。

  • 响应时间较长:参与者和协调者资源都被锁住,提交或者回滚之后才能释放
  • 不确定性:当协事务管理器发送 commit 之后,并且此时只有一个参与者收到了 commit,那么当

该参与者与事务管理器同时宕机之后,重新选举的事务管理器无法确定该条消息是否提交成功。
2、三阶段协议:主要是针对两阶段的优化,解决了2PC单点故障的问题,但是性能问题和不一致问题仍然
没有根本解决
引入了超时机制解决参与者阻塞的问题,超时后本地提交,2pc只有协调者有超时机制

  • 第一阶段:CanCommit阶段,协调者询问事务参与者,是否有能力完成此次事务。

如果都返回yes,则进入第二阶段
有一个返回no或等待响应超时,则中断事务,并向所有参与者发送abort请求

  • 第二阶段:PreCommit阶段,此时协调者会向所有的参与者发送PreCommit请求,参与者收到后

开始执行事务操作。参与者执行完事务操作后(此时属于未提交事务的状态),就会向协调者反馈
“Ack”表示我已经准备好提交了,并等待协调者的下一步指令。

  • 第三阶段:DoCommit阶段, 在阶段二中如果所有的参与者节点都返回了Ack,那么协调者就会从

“预提交状态”转变为“提交状态”。然后向所有的参与者节点发送"doCommit"请求,参与者节点在
收到提交请求后就会各自执行事务提交操作,并向协调者节点反馈“Ack”消息,协调者收到所有参
与者的Ack消息后完成事务。 相反,如果有一个参与者节点未完成PreCommit的反馈或者反馈超
时,那么协调者都会向所有的参与者节点发送abort请求,从而中断事务。

TCC事务模型

TCC(补偿事务):Try、Confirm、Cancel
针对每个操作,都要注册一个与其对应的确认和补偿(撤销)操作
Try操作做业务检查及资源预留,Confirm做业务确认操作,Cancel实现一个与Try相反的操作既回滚操
作。TM首先发起所有的分支事务的try操作,任何一个分支事务的try操作执行失败,TM将会发起所有
分支事务的Cancel操作,若try操作全部成功,TM将会发起所有分支事务的Confirm操作,其中
Confirm/Cancel操作若执行失败,TM会进行重试。
TCC模型对业务的侵入性较强,改造的难度较大,每个操作都需要有 try 、 confirm 、 cancel 三个接
口实现
TCC 中会添加事务日志,如果 Confirm 或者 Cancel 阶段出错,则会进行重试,所以这两个阶段需要支
持幂等;如果重试失败,则需要人工介入进行恢复和处理等。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
5月前
|
存储 缓存 NoSQL
Redis常见面试题(二):redis分布式锁、redisson、主从一致性、Redlock红锁;Redis集群、主从复制,哨兵模式,分片集群;Redis为什么这么快,I/O多路复用模型
redis分布式锁、redisson、可重入、主从一致性、WatchDog、Redlock红锁、zookeeper;Redis集群、主从复制,全量同步、增量同步;哨兵,分片集群,Redis为什么这么快,I/O多路复用模型——用户空间和内核空间、阻塞IO、非阻塞IO、IO多路复用,Redis网络模型
Redis常见面试题(二):redis分布式锁、redisson、主从一致性、Redlock红锁;Redis集群、主从复制,哨兵模式,分片集群;Redis为什么这么快,I/O多路复用模型
|
4月前
|
算法 Go
[go 面试] 雪花算法与分布式ID生成
[go 面试] 雪花算法与分布式ID生成
|
2月前
|
消息中间件 架构师 Java
阿里面试:秒杀的分布式事务, 是如何设计的?
在40岁老架构师尼恩的读者交流群中,近期有小伙伴在面试阿里、滴滴、极兔等一线互联网企业时,遇到了许多关于分布式事务的重要面试题。为了帮助大家更好地应对这些面试题,尼恩进行了系统化的梳理,详细介绍了Seata和RocketMQ事务消息的结合,以及如何实现强弱结合型事务。文章还提供了分布式事务的标准面试答案,并推荐了《尼恩Java面试宝典PDF》等资源,帮助大家在面试中脱颖而出。
|
4月前
|
存储 NoSQL Java
一天五道Java面试题----第十一天(分布式架构下,Session共享有什么方案--------->分布式事务解决方案)
这篇文章是关于Java面试中的分布式架构问题的笔记,包括分布式架构下的Session共享方案、RPC和RMI的理解、分布式ID生成方案、分布式锁解决方案以及分布式事务解决方案。
一天五道Java面试题----第十一天(分布式架构下,Session共享有什么方案--------->分布式事务解决方案)
|
5月前
|
canal 缓存 NoSQL
Redis常见面试题(一):Redis使用场景,缓存、分布式锁;缓存穿透、缓存击穿、缓存雪崩;双写一致,Canal,Redis持久化,数据过期策略,数据淘汰策略
Redis使用场景,缓存、分布式锁;缓存穿透、缓存击穿、缓存雪崩;先删除缓存还是先修改数据库,双写一致,Canal,Redis持久化,数据过期策略,数据淘汰策略
Redis常见面试题(一):Redis使用场景,缓存、分布式锁;缓存穿透、缓存击穿、缓存雪崩;双写一致,Canal,Redis持久化,数据过期策略,数据淘汰策略
|
4月前
|
Go API 数据库
[go 面试] 分布式事务框架选择与实践
[go 面试] 分布式事务框架选择与实践
|
5月前
|
负载均衡 监控 搜索推荐
面试题ES问题之Solr和Elasticsearch在分布式管理上如何解决
面试题ES问题之Solr和Elasticsearch在分布式管理上如何解决
43 1
|
4月前
|
NoSQL Go API
[go 面试] 为并发加锁:保障数据一致性(分布式锁)
[go 面试] 为并发加锁:保障数据一致性(分布式锁)
|
5月前
|
消息中间件 Java 中间件
Java面试题:解释分布式事务的概念,讨论常见的分布式事务解决方案。
Java面试题:解释分布式事务的概念,讨论常见的分布式事务解决方案。
67 0
|
5月前
|
缓存 搜索推荐 Java
Java面试题:简述CAP理论及其在分布式系统设计中的应用。请提供一个具体的例子,说明在系统设计中如何取舍一致性和可用性
Java面试题:简述CAP理论及其在分布式系统设计中的应用。请提供一个具体的例子,说明在系统设计中如何取舍一致性和可用性
65 0