数据结构:二叉树的非递归遍历

简介: 数据结构:二叉树的非递归遍历

二叉树的前序遍历

144.二叉树的前序遍历

题目描述

给你二叉树的根节点 root ,返回它节点值的 前序 遍历。
在这里插入图片描述
提示:

树中节点数目在范围 [0, 100] 内
-100 <= Node.val <= 100

思路

我们知道前序遍历是按照根-->左子树-->右子树的顺序来遍历的,如果要使用迭代的方法来解决,我们可以使用栈来解决,先把根节点放入栈中,然后将右孩子加入栈,再加入左孩子。因为这样子进栈后,出栈的顺序就是根-->左子树-->右子树

在这里插入图片描述

代码

class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> list=new ArrayList();
        Stack<TreeNode> stack=new Stack();
        if(root==null){
            return list;
        }
        //只要栈非空,则把栈顶元素弹出
        stack.push(root);
        while(!stack.isEmpty()){
            TreeNode node= stack.pop();
            list.add(node.val);
            if(node.right!=null){
                 stack.push(node.right);
            }
            if(node.left!=null){
                 stack.push(node.left);
            }
           
           
        }
        return list;

    }
}

二叉树的中序遍历

题目描述

给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。
在这里插入图片描述
提示:

树中节点数目在范围 [0, 100] 内
-100 <= Node.val <= 100

思路

中序遍历是左中右,先访问的是二叉树顶部的节点,然后一层一层向下访问,直到到达树左面的最底部,再开始处理节点(也就是在把节点的数值放进result数组中)
那么在使用迭代法写中序遍历,就需要借用指针的遍历来帮助访问节点,栈则用来处理节点上的元素。
在这里插入图片描述

代码

class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        if (root == null){
            return result;
        }
        Stack<TreeNode> stack = new Stack<>();
        TreeNode cur = root;
        while (cur != null || !stack.isEmpty()){
           if (cur != null){
               stack.push(cur);
               cur = cur.left;
           }else{
               cur = stack.pop();
               result.add(cur.val);
               cur = cur.right;
           }
        }
        return result;
    }
}

二叉树的后序遍历

后序遍历

题目描述

给你一棵二叉树的根节点 root ,返回其节点值的 后序遍历 。
在这里插入图片描述
提示:

树中节点的数目在范围 [0, 100] 内
-100 <= Node.val <= 100

思路

后续遍历的遍历顺序是左右根,前序遍历的遍历顺序是根左右,我们发现我们只需要调整一下左右孩子的进栈顺序,然后再反转一下,就可以得到后序遍历
在这里插入图片描述

代码

class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> list=new ArrayList();
        Stack<TreeNode> stack=new Stack();
        if(root==null){
            return list;
        }
        stack.push(root);
        while(!stack.isEmpty()){
            TreeNode node=stack.pop();
            list.add(node.val);
            if(node.left!=null){
                stack.push(node.left);
            }
            if(node.right!=null){
                stack.push(node.right);
            }
        }
    //反转
        Collections.reverse(list);
        return list;


    }
}

二叉树的层序遍历

层序遍历

题目描述

给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。
在这里插入图片描述

前提知识

在解决这道题目之前,我们应该先了解什么是层序遍历
层序遍历一个二叉树。就是从左到右一层一层的去遍历二叉树。
队列先进先出,符合一层一层遍历的逻辑,我们可以使用队列来实现层序遍历
在这里插入图片描述

public void levelOrderTraversal(Node root){
    if(root==null){
        return;
    }
    Queue<Node> queue=new LinkedList<>();
    queue.offer(root);
    while(!queue.isEmpty()){
        Node node=queue.poll();
        System.out.print(node.val+" ");
        if(node.left!=null) {
            queue.offer(node.left);
        }
        if(node.right!=null) {
            queue.offer(node.right);
        }
    }
}

代码

class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
        if(root==null) {
            return new ArrayList<List<Integer>>();
        }
        
        List<List<Integer>> res = new ArrayList<List<Integer>>();
        Queue<TreeNode> queue = new LinkedList<TreeNode>();
        //将根节点放入队列中,然后不断遍历队列
        queue.add(root);
        while(queue.size()>0) {
            //获取当前队列的长度,这个长度相当于 当前这一层的节点个数
            int size = queue.size();
            ArrayList<Integer> tmp = new ArrayList<Integer>();
            //将队列中的元素都拿出来(也就是获取这一层的节点),放到临时list中
            //如果节点的左/右子树不为空,也放入队列中
            for(int i=0;i<size;++i) {
                TreeNode t = queue.poll();
                tmp.add(t.val);
                if(t.left!=null) {
                    queue.offer(t.left);
                }
                if(t.right!=null) {
                    queue.offer(t.right);
                }
            }
            //将临时list加入最终返回结果中
            res.add(tmp);
        }
        return res;
    }
}
相关文章
|
29天前
|
存储 机器学习/深度学习
【数据结构】二叉树全攻略,从实现到应用详解
本文介绍了树形结构及其重要类型——二叉树。树由若干节点组成,具有层次关系。二叉树每个节点最多有两个子树,分为左子树和右子树。文中详细描述了二叉树的不同类型,如完全二叉树、满二叉树、平衡二叉树及搜索二叉树,并阐述了二叉树的基本性质与存储方式。此外,还介绍了二叉树的实现方法,包括节点定义、遍历方式(前序、中序、后序、层序遍历),并提供了多个示例代码,帮助理解二叉树的基本操作。
44 13
【数据结构】二叉树全攻略,从实现到应用详解
|
26天前
|
存储 算法 C语言
数据结构基础详解(C语言): 二叉树的遍历_线索二叉树_树的存储结构_树与森林详解
本文从二叉树遍历入手,详细介绍了先序、中序和后序遍历方法,并探讨了如何构建二叉树及线索二叉树的概念。接着,文章讲解了树和森林的存储结构,特别是如何将树与森林转换为二叉树形式,以便利用二叉树的遍历方法。最后,讨论了树和森林的遍历算法,包括先根、后根和层次遍历。通过这些内容,读者可以全面了解二叉树及其相关概念。
|
26天前
|
存储 机器学习/深度学习 C语言
数据结构基础详解(C语言): 树与二叉树的基本类型与存储结构详解
本文介绍了树和二叉树的基本概念及性质。树是由节点组成的层次结构,其中节点的度为其分支数量,树的度为树中最大节点度数。二叉树是一种特殊的树,其节点最多有两个子节点,具有多种性质,如叶子节点数与度为2的节点数之间的关系。此外,还介绍了二叉树的不同形态,包括满二叉树、完全二叉树、二叉排序树和平衡二叉树,并探讨了二叉树的顺序存储和链式存储结构。
|
26天前
|
存储 C语言
数据结构基础详解(C语言): 树与二叉树的应用_哈夫曼树与哈夫曼曼编码_并查集_二叉排序树_平衡二叉树
本文详细介绍了树与二叉树的应用,涵盖哈夫曼树与哈夫曼编码、并查集以及二叉排序树等内容。首先讲解了哈夫曼树的构造方法及其在数据压缩中的应用;接着介绍了并查集的基本概念、存储结构及优化方法;随后探讨了二叉排序树的定义、查找、插入和删除操作;最后阐述了平衡二叉树的概念及其在保证树平衡状态下的插入和删除操作。通过本文,读者可以全面了解树与二叉树在实际问题中的应用技巧和优化策略。
|
2月前
|
算法
【初阶数据结构篇】二叉树算法题
二叉树是否对称,即左右子树是否对称.
|
2月前
|
存储
【初阶数据结构篇】实现链式结构二叉树(二叉链)下篇
要改变root指针的指向,将本来指向根节点的root指针改为空,所以传二级指针(一级指针也可以,只不过在调用完记得把root置为空)。
|
2月前
|
存储 测试技术
【初阶数据结构篇】实现链式结构二叉树(二叉链)上篇
先构建根结点,再对左右子树构建,每次需要时申请一个结点空间即可,否则返回空指针。
|
5天前
|
算法 安全 测试技术
golang 栈数据结构的实现和应用
本文详细介绍了“栈”这一数据结构的特点,并用Golang实现栈。栈是一种FILO(First In Last Out,即先进后出或后进先出)的数据结构。文章展示了如何用slice和链表来实现栈,并通过golang benchmark测试了二者的性能差异。此外,还提供了几个使用栈结构解决的实际算法问题示例,如有效的括号匹配等。
golang 栈数据结构的实现和应用
01_设计一个有getMin功能的栈
01_设计一个有getMin功能的栈
|
5天前
|
前端开发
07_用队列实现栈
07_用队列实现栈