【边缘检测】基于蚁群算法实现图像边缘检测附matlab代码

简介: 【边缘检测】基于蚁群算法实现图像边缘检测附matlab代码

 1 内容介绍

边缘信息是图像最基本的特征,所包含的也是图像中用于识别的有用信息。为人们描述或识别目标以及解释图像提供了有价值的和重要的信息。边缘检测一直是计算机视觉和图像处理领域的经典研究课题之一。其目的是去发现图像中关于形状和反射或透射比的信息,是图像处理、图像分析、模式识别、计算机视觉以及人类视觉的基本步骤之一,其结果的正确性和可靠性将直接影响到机器视觉系统对客观世界的理解。由于目标边缘、图像纹理甚至噪声都可能成为有意义的边缘,因此很难找到一种普适性的边缘检测算法,现有诸多边缘检测的方法各有其特点,同时也都存在着各自的局限性和不足之处,因此图像的边缘检测这个领域还有待于进一步的改进和发展。提出了一种结合梯度和统计均值相对差的蚁群优化方法进行图像边缘检测。 提取梯度值和统计均值的相对差值用于蚂蚁的搜索。 实验结果表明所提算法的优越性能。

2 仿真代码

clc

clear all

close all

% Input:

% gray image with a square size

%

% Output:

% four edge map images, which are obtained by the method using four functions,

% respectively.

%

close all; clear all; clc;

% image loading

filename = 'camera128';

img = double(imread([filename '.bmp']))./255;

[nrow, ncol] = size(img);

%visiblity function initialization, see equation (4)

   % generate edge map matrix

   % It uses pheromone function to determine edge?

   

   T = func_seperate_two_class(p); %eq. (13)-(21), Calculate the threshold to seperate the edge map into two class

   

   fprintf('Done!\n');

   imwrite(uint8(abs((p>=T).*255-255)), gray(256), [filename '_edge_aco_' num2str(nMethod) '.bmp'], 'bmp');

   

end % end of nMethod

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   Inner Function  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 运行结果

网络异常,图片无法展示
|
编辑

4 参考文献

[1] Jian Z ,  He K ,  Zheng X , et al. An Ant Colony Optimization Algorithm for Image Edge Detection[C]// Artificial Intelligence and Computational Intelligence (AICI), 2010 International Conference on. IEEE, 2010.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


相关文章
|
3月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
154 0
|
3月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
195 8
|
3月前
|
机器学习/深度学习 编解码 算法
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
196 8
|
3月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
326 0
|
3月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
227 2
|
4月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
241 3
|
4月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
180 6
|
3月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
205 8
|
3月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
4月前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
283 14

热门文章

最新文章