【笔记】开发指南—SQL调优指南—SQL调优进阶—查询执行器介绍

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 本文介绍PolarDB-X的SQL执行器如何执行SQL中无法下推的部分。

基本概念

SQL执行器是PolarDB-X中执行逻辑层算子的组件。对于简单的点查SQL,往往可以整体下推存储层MySQL执行,因而感觉不到执行器的存在,MySQL的结果经过简单的解包封包又被回传给用户。但是对于较复杂的SQL,往往无法将SQL中的算子全部下推,这时候就需要PolarDB-X执行器执行无法下推的计算。


SELECT l_orderkey, sum(l_extendedprice *(1 - l_discount)) AS revenue
FROM CUSTOMER, ORDERS, LINEITEM
WHERE c_mktsegment = 'AUTOMOBILE'
  and c_custkey = o_custkey
  and l_orderkey = o_orderkey
  and o_orderdate < '1995-03-13'
  and l_shipdate > '1995-03-13'
GROUP BY l_orderkey;

通过EXPLAIN命令看到PolarDB-X的执行计划如下:


HashAgg(group="l_orderkey", revenue="SUM(*)")

HashJoin(condition="o_custkey = c_custkey", type="inner")
Gather(concurrent=true)
LogicalView(tables="ORDERS_[0-7],LINEITEM_[0-7]", shardCount=8, sql="SELECT `ORDERS`.`o_custkey`, `LINEITEM`.`l_orderkey`, (`LINEITEM`.`l_extendedprice` * (? - `LINEITEM`.`l_discount`)) AS `x` FROM `ORDERS` AS `ORDERS` INNER JOIN `LINEITEM` AS `LINEITEM` ON (((`ORDERS`.`o_orderkey` = `LINEITEM`.`l_orderkey`) AND (`ORDERS`.`o_orderdate` < ?)) AND (`LINEITEM`.`l_shipdate` > ?))")
Gather(concurrent=true)
LogicalView(tables="CUSTOMER_[0-7]", shardCount=8, sql="SELECT `c_custkey` FROM `CUSTOMER` AS `CUSTOMER` WHERE (`c_mktsegment` = ?)")

如下图所示,LogicalView的SQL在执行时被下发给MySQL,而不能下推的部分(除LogicalView以外的算子)由PolarDB-X执行器进行计算,得到最终用户SQL需要的结果。1.3.png

执行模型

与传统数据库采用Volcano执行模型不一样,PolarDB-X采样的是Pull~Push混合执行模型。所有算子按照计算过程中是否需要缓存临时表,将执行过程切分成多个pipeline,pipeline内部采样next()接口,按批获取数据,完成在pipeline内部的计算,pipeline间采用push接口,上游pipeline在计算完成后,会将数据源源不断推送给下游pipeline做计算。下面的例子中,被切分成两个pipeline,在pipeline-A中扫描Table-A数据,完成构建哈希表。Pipeline-B扫描Table-B的数据,然后在HashJoin算子内部做关联得到JOIN结果,再返回客户端。1.5.png

执行模式

目前 PolarDB-X 支持了三种执行模式:

  • 单机单线程(TP_LOCAL):查询过程中,是单线程计算,TP负载的查询涉及到的扫描行数比较少,往往会采用这种执行模式,比如基于主键的点查。
  • 单机并行(AP_LOCAL):查询过程中,会利用节点的多核资源做并行计算,如果您没有配置只读实例,针对AP负载的查询,往往会采样这种执行模式,一般也称之为Parallel Query模式。
  • 多机并行(MPP):您如果配置了只读实例,针对AP负载的查询,可以协调只读实例上多个节点的多核做分布式多机并行加速。

为了准确知道执行模式,在原有EXPLAIN和执行计划的基础上,扩展了EXPLAIN PHYSICAL例如以下查询,通过指令可以查看当前查询采样的是MPP模式,此外还可以获取到每个执行片段的并发数。


mysql> explain physical select a.k, count(*) cnt from sbtest1 a, sbtest1 b where a.id = b.k and a.id > 1000 group by k having cnt > 1300 or
der by cnt limit 5, 10;
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| PLAN |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ExecutorType: MPP |
| The Query's MaxConcurrentParallelism: 2 |
| Fragment 1 |
| Shuffle Output layout: [BIGINT, BIGINT] Output layout: [BIGINT, BIGINT] |
| Output partitioning: SINGLE [] Parallelism: 1 |
| TopN(sort="cnt ASC", offset=?2, fetch=?3) |
| Filter(condition="cnt > ?1") |
| HashAgg(group="k", cnt="COUNT()") |
| BKAJoin(condition="k = id", type="inner") |
| RemoteSource(sourceFragmentIds=[0], type=RecordType(INTEGER_UNSIGNED id, INTEGER_UNSIGNED k)) |
| Gather(concurrent=true) |
| LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `k` FROM `sbtest1` AS `sbtest1` WHERE ((`k` > ?) AND (`k` IN (...)))") |
| Fragment 0 |
| Shuffle Output layout: [BIGINT, BIGINT] Output layout: [BIGINT, BIGINT] |
| Output partitioning: SINGLE [] Parallelism: 1 Splits: 16 |
| LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `id`, `k` FROM `sbtest1` AS `sbtest1` WHERE (`id` > ?)") |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------+

同样的也允许您通过HINT EXECUTOR_MODE指定执行模式。比如主实例空闲资源很多,可以考虑强制设置为单机或者多机并行模式来加速。


mysql> explain physical /+TDDL:EXECUTOR_MODE=AP_LOCAL/select a.k, count(*) cnt from sbtest1 a, sbtest1 b where a.id = b.k and a.id > 1000 group by k having cnt > 1300 order by cnt limit 5, 10;                                                                                                                                                     |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ExecutorMode: AP_LOCAL |
| Fragment 0 dependency: [] parallelism: 4 |
| BKAJoin(condition="k = id", type="inner") |
| Gather(concurrent=true) |
| LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `id`, `k` FROM `sbtest1` AS `sbtest1` WHERE (`id` > ?)") |
| Gather(concurrent=true) |
| LogicalView(tables="[000000-000003].sbtest1_[00-15]", shardCount=16, sql="SELECT `k` FROM `sbtest1` AS `sbtest1` WHERE ((`k` > ?) AND (`k` IN (...)))") |
| Fragment 1 dependency: [] parallelism: 8 |
| LocalBuffer |
| RemoteSource(sourceFragmentIds=[0], type=RecordType(INTEGER_UNSIGNED id, INTEGER_UNSIGNED k, INTEGER_UNSIGNED k0)) |
| Fragment 2 dependency: [0, 1] parallelism: 8 |
| Filter(condition="cnt > ?1") |
| HashAgg(group="k", cnt="COUNT()") |
| RemoteSource(sourceFragmentIds=[1], type=RecordType(INTEGER_UNSIGNED id, INTEGER_UNSIGNED k, INTEGER_UNSIGNED k0)) |
| Fragment 3 dependency: [0, 1] parallelism: 1 |
| LocalBuffer |
| RemoteSource(sourceFragmentIds=[2], type=RecordType(INTEGER_UNSIGNED k, BIGINT cnt)) |
| Fragment 4 dependency: [2, 3] parallelism: 1 |
| TopN(sort="cnt ASC", offset=?2, fetch=?3) |
| RemoteSource(sourceFragmentIds=[3], type=RecordType(INTEGER_UNSIGNED k, BIGINT cnt)) |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------+

在多机并行MPP执行模式的并发度是根据物理扫描行数、实例规格和计算所涉及到表的分表数来计算出来的,整体的并行度要考虑高并发场景,所以并行度的计算会偏保守,您可以通过上述EXPLAIN PHYSICAL指令查看并行度。也同样支持HINT MPP_PARALLELISM强制指定并行度。


/+TDDL:EXECUTOR_MODE=MPP MPP_PARALLELISM=8/select a.k, count(*) cnt from sbtest1 a, sbtest1 b where a.id = b.k and a
相关文章
|
SQL Apache 调度
Apache Hudi在腾讯的落地与应用
Apache Hudi在腾讯的落地与应用
344 3
|
弹性计算 Go 数据安全/隐私保护
开年王炸!三分钟搭建雾锁王国联机服务器
薪谷王国已经陷入沉沦。出于对魔法力量的贪念,你的祖先们释放了一种吞噬世界的疫病。如何在这个开放世界中自由选择前进的方向,如何塑造自己的命运?这趟旅程,邀你来探索。花上三分钟,使用阿里云计算巢一键搭建好云服务器,拉上你的搭子一起冲。
6878 22
开年王炸!三分钟搭建雾锁王国联机服务器
|
8月前
|
虚拟化 iOS开发 MacOS
VMware ESXi 8.0U3d macOS Unlocker & OEM BIOS 2.7 集成网卡驱动和 NVMe 驱动 (集成驱动版)
VMware ESXi 8.0U3d macOS Unlocker & OEM BIOS 2.7 集成网卡驱动和 NVMe 驱动 (集成驱动版)
419 33
VMware ESXi 8.0U3d macOS Unlocker & OEM BIOS 2.7 集成网卡驱动和 NVMe 驱动 (集成驱动版)
|
Ubuntu Linux UED
好用的国产Linux系统有那些
好用的国产Linux系统有那些
2354 0
|
11月前
|
弹性计算 运维 监控
EMR管控平台全面升级:智能化助力客户实现在离线混部和降本增效
本次介绍EMR开源大数据平台2.0的最新特性,基于微服务架构,提供更稳定高效的服务。平台升级主要体现在智能化和Serverless两个方面。智能化功能利用大语言模型提升运维效率,推出一键诊断和根因分析,缩短问题定位时间。全托管弹性伸缩根据业务动态自动调整资源,提高资源利用率。即将推出的EMR on ACS产品形态支持离在线业务混部,进一步优化资源使用,帮助用户实现降本增效。
|
Android开发
Android 使用ViewPager和自定义PagerAdapter实现轮播图效果
Android 使用ViewPager和自定义PagerAdapter实现轮播图效果
275 0
|
12月前
|
监控 IDE Java
如何在无需重新启动服务器的情况下在 Spring Boot 上重新加载我的更改?
如何在无需重新启动服务器的情况下在 Spring Boot 上重新加载我的更改?
1092 8
|
存储 机器学习/深度学习 人工智能
数据结构学习笔记——图的存储结构(邻接矩阵和邻接表)
数据结构学习笔记——图的存储结构(邻接矩阵和邻接表)
数据结构学习笔记——图的存储结构(邻接矩阵和邻接表)
|
存储 JSON 前端开发
JavaWeb中用来定义统一的响应结果的result类
JavaWeb中用来定义统一的响应结果的result类
614 0
vue3打包war压缩包配置
vue3打包war压缩包配置
259 0