Pandas+ SLS SQL:融合灵活性和高性能的数据透视

本文涉及的产品
对象存储 OSS,20GB 3个月
对象存储 OSS,内容安全 1000次 1年
文件存储 NAS,50GB 3个月
简介: Pandas是一个十分强大的python数据分析工具,也是各种数据建模的标准工具。Pandas擅长处理数字型数据和时间序列数据。Pandas的第一大优势在于,封装了一些复杂的代码实现过程,只需要调用接口就行了,避免了编写大量的代码。Pandas的第二大优势在于灵活性,可以实现自动化批量化处理复杂的逻辑,这些工作是Excel等工具是无法完成的。因而Pandas介于Excel和自主编写程序之间,兼具灵活性和简洁性的数据分析工具。

Pandas是什么

Pandas是一个十分强大的python数据分析工具,也是各种数据建模的标准工具。Pandas擅长处理数字型数据和时间序列数据。Pandas的第一大优势在于,封装了一些复杂的代码实现过程,只需要调用接口就行了,避免了编写大量的代码。Pandas的第二大优势在于灵活性,可以实现自动化批量化处理复杂的逻辑,这些工作是Excel等工具是无法完成的。因而Pandas介于Excel和自主编写程序之间,兼具灵活性和简洁性的数据分析工具。


在输入上,Pandas支持读取多种格式的文件,包括csv、orc、xml、json,也支持读取分布式文件系统HDFS,此外还支持通过jdbc协议读取mysql或兼容mysql协议的数仓。输入的数据会转换成内存中的数据结构DataFrame,之后的数据分析就是围绕着DataFrame进行。


在输出上,pandas可以实现非常震撼的可视化效果,对接众多赏心悦目的可视化库,可以实现动态数据交互效果。

pandas毕竟是一种python脚本语言,性能上一般,只能处理少量数据,跟现代化的数仓的计算能力差别是比较大的。但是如此灵活的pandas分析,能否和数仓相结合,赋予数仓更灵活的数据分析能力,同时获得大规模数据的分析能力呢?

SQL语言的优势和缺点


SQL是目前使用最为广泛的数据分析语言,SQL自从1980年代在IBM研发出来之后,立即成为各种数据分析系统的标准语言。究其原因,SQL是一种声明式语法,用户只需要声明想要的结果,不必指定获取结果的过程。这种方式有两个好处,一方面,如何以最高性能最小代价获得计算结果,需要编写复杂的算法,乃至了解机器的硬件特性,这需要专门的数据库内核工程师才能做到;对于数据分析师而言,这个要求有点过于复杂。因而声明式语法,解放了数据分析师的工作量,降低了数据分析门槛,扩大了SQL的受众。另一方面,没有指定运行过程,则给了数据库内核工程师们更大的自由度去生成最佳的执行计划。这是SQL的优势。


SQL的理论基础来自于关系代数,任何一个操作的对象都是关系,任何操作的结果也是一个关系。关系+操作生成一个新的关系。任何时刻,用户都可以看到一个关系实体。这套极强的理论基础,可以让一个SQL语句无限扩展,在任意时刻都能获得一个关系,再附加一个操作,变成另外一个关系。


由于SQL是基于关系代数和关系模型,关系模型中的关系这个实体,我们可以把它想象成一个二维的表格包含多行多列,行数无限制,而列数则是有限制的。行数是动态的,可以是0行,也可以是无限行。列数则是静态的,不可变更的,不管有无数据,都是固定的列数输出。静态列的这种方法,也限制了SQL在一些场景的应用。两个典型的场景是矩阵转置或者生成透视表(交叉表)。这两种场景下,列的个数都是动态的。因而SQL需要部分借助于编程才能实现完整的数据分析。


SLS SQL的优势



SQL只是一个语法表现成,是用户和数仓系统交互的语言。而数仓的真正强大之处在于它的内核。SLS日志数仓,采用SQL为语法接口,借助于云原生的分布式架构,可以实现query级别的弹性分析能力,可以实现单次分析千亿条数据的能力。


Pandas具备分析灵活性,SLS具备强大的SQL分析能力。两者融合,既能享受SLS强大的SQL分析能力,又能借助Pandas的灵活的数据分析和分析库。那么两者怎么结合呢?


Pandas连接SLS 做融合分析


Pandas支持jdbc接口读取数据,SLS也支持jdbc协议。因而Pandas可以通过jdbc协议连接SLS。对于分析任务中的比较重的计算,通过SQL传递给SLS计算;对于比较灵活的分析、SQL完成不了的分析,则在Pandas上做二次分析和可视化。例如构建透视表或者交叉表:先通过SQ L完成两个维度的交叉计算,这个过程往往计算量比较大;再通过Pandas完成行列转换,展示成二维表。


一个例子:


import numpy as np

import pandas as pd

import pymysql


# sql 命令

slshost=""

username=""

password=""

dbname=""  # project is database

sql_cmd = "select method,status ,count(1) as pv from access_log group by method, status limit 1000"

con = pymysql.connect(host=slshost, port=10005,user=username, password=password, database=dbname, charset='utf8', use_unicode=True)

data = pd.read_sql(sql_cmd, con)

tab=pd.pivot_table(data,values="pv",index="status",columns="method" )

print(tab)


例子中的SQL,分析nginx访问日志,计算method和status两个维度的pv。再调用pandas的pivot_table函数构建透视表。


执行结果如下图:


相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
1月前
|
Python
使用 Pandas 库时,如何处理数据的重复值?
在使用Pandas处理数据重复值时,需要根据具体的数据特点和分析需求,选择合适的方法来确保数据的准确性和唯一性。
157 8
|
7天前
|
存储 数据挖掘 数据处理
Pandas 数据筛选:条件过滤
Pandas 是 Python 最常用的数据分析库之一,提供了强大的数据结构和工具。本文从基础到高级,介绍如何使用 Pandas 进行条件过滤,包括单一条件、多个条件过滤、常见问题及解决方案,以及动态和复杂条件过滤的高级用法。希望本文能帮助你更好地利用 Pandas 处理数据。
115 78
|
4天前
|
数据挖掘 数据处理 数据库
Pandas数据聚合:groupby与agg
Pandas库中的`groupby`和`agg`方法是数据分析中不可或缺的工具,用于数据分组与聚合计算。本文从基础概念、常见问题及解决方案等方面详细介绍这两个方法的使用技巧,涵盖单列聚合、多列聚合及自定义聚合函数等内容,并通过代码案例进行说明,帮助读者高效处理数据。
62 32
|
2天前
|
数据挖掘 数据处理 索引
Pandas数据重命名:列名与索引为标题
Pandas 是强大的数据分析工具,支持灵活的数据结构和操作。本文介绍如何使用 Pandas 对 `DataFrame` 的列名和索引进行重命名,包括直接赋值法、`rename()` 方法及索引修改。通过代码示例展示了具体操作,并讨论了常见问题如名称冲突、数据类型不匹配及 `inplace` 参数的使用。掌握这些技巧可使数据更清晰易懂,便于后续分析。
39 29
|
3天前
|
SQL 数据采集 数据挖掘
Pandas数据合并:concat与merge
Pandas是Python中强大的数据分析库,提供灵活高效的数据结构和工具。本文详细介绍了Pandas中的两种主要合并方法——`concat`和`merge`。`concat`用于沿特定轴连接多个Pandas对象,适用于简单拼接场景;`merge`则类似于SQL的JOIN操作,根据键合并DataFrame,支持多种复杂关联。文章还探讨了常见问题及解决方案,如索引对齐、列名冲突和数据类型不一致等,帮助读者全面掌握这两种方法,提高数据分析效率。
21 8
|
9天前
|
数据挖掘 索引 Python
Pandas数据读取:CSV文件
Pandas 是 Python 中强大的数据分析库,`read_csv` 函数用于从 CSV 文件中读取数据。本文介绍 `read_csv` 的基本用法、常见问题及其解决方案,并通过代码案例详细说明。涵盖导入库、读取文件、指定列名和分隔符、处理文件路径错误、编码问题、大文件读取、数据类型问题、日期时间解析、空值处理、跳过行、指定索引列等。高级用法包括自定义列名映射、处理多行标题和注释行。希望本文能帮助你更高效地使用 Pandas 进行数据读取和处理。
55 13
|
6天前
|
算法 数据挖掘 索引
Pandas数据排序:单列与多列排序详解
本文介绍了Pandas库中单列和多列排序的方法及常见问题的解决方案。单列排序使用`sort_values()`方法,支持升序和降序排列,并解决了忽略大小写、处理缺失值和索引混乱等问题。多列排序同样使用`sort_values()`,可指定不同列的不同排序方向,解决列名错误和性能优化等问题。掌握这些技巧能提高数据分析效率。
34 9
|
3天前
|
SQL 存储 缓存
日志服务 SQL 引擎全新升级
SQL 作为 SLS 基础功能,每天承载了用户大量日志数据的分析请求,既有小数据量的快速查询(如告警、即席查询等);也有上万亿数据规模的报表级分析。SLS 作为 Serverless 服务,除了要满足不同用户的各类需求,还要兼顾性能、隔离性、稳定性等要求。过去一年多的时间,SLS SQL 团队做了大量的工作,对 SQL 引擎进行了全新升级,SQL 的执行性能、隔离性等方面都有了大幅的提升。
|
21天前
|
SQL 存储 缓存
MySQL进阶突击系列(02)一条更新SQL执行过程 | 讲透undoLog、redoLog、binLog日志三宝
本文详细介绍了MySQL中update SQL执行过程涉及的undoLog、redoLog和binLog三种日志的作用及其工作原理,包括它们如何确保数据的一致性和完整性,以及在事务提交过程中各自的角色。同时,文章还探讨了这些日志在故障恢复中的重要性,强调了合理配置相关参数对于提高系统稳定性的必要性。
|
1月前
|
Python

相关产品

  • 日志服务