人工智能(AI)、机器学习(ML)和深度学习(DL):有什么区别?

简介: 我们经常交替使用人工智能(AI)、机器学习(ML)和深度学习(DL)这些术语,尽管我们几乎每天都阅读或听到它们。本文解释了这些技术是如何演变的以及它们有何不同。

b32ca208363ff298c3d786a265486b0ffc1f79.jpg

人工智能Artificial Intelligence(AI)、机器学习Machine Learning(ML)和深度学习Deep Learning(DL)通常可以互换使用。但是,它们并不完全相同。人工智能是最广泛的概念,它赋予机器模仿人类行为的能力。机器学习是将人工智能应用到系统或机器中,帮助其自我学习和不断改进。最后,深度学习使用复杂的算法和深度神经网络来重复训练特定的模型或模式。

让我们看看每个术语的演变和历程,以更好地理解人工智能、机器学习和深度学习实际指的是什么。

人工智能
自过去 70 多年以来,人工智能已经取得了长足的进步。无论我们是否知道,也不管喜欢与否,,它已经渗透到了我们生活的方方面面。在过去十年中,机器学习和深度学习的进步已经在各种规模的行业和组织中创造了人工智能热潮。云服务提供商通过开发免费的开源服务和提供新的场景进一步推动的这种势头。
265ce5903c7b5df15db68154171c16ce3004e0.jpg
人工智能可能是自 1956 年以来最受关注的概念。到 2015 年,GPU 的广泛使用使并行处理更快、更强大、更便宜。而愈加廉价的存储可以大规模地存储大数据(从纯文本到图像、映射等)。这产生了对数据分析的需求,它被更普遍地称为数据科学data science,导致机器学习发展为实现人工智能的方法。

机器学习
机器学习是使用算法来处理、学习和理解或预测可用数据的模式。最近,软件开发的低代码和无代码概念被用作机器学习中的自学习过程,它给出了完成特定任务的特定指令。通过使用数据和算法对机器进行“训练”,使其能够学习如何执行任务,更重要的是,将学习应用到不断发展的过程中。
294f01636146e8145746687dd32cbe5d1d0207.jpg
机器学习是在开发者社区专注于 AI 时发展起来的,然后发展了算法决策树学习、逻辑编程、聚类、并行处理和强化学习。这些都是朝着正确方向迈出的良好一步,但不足以解决世界感兴趣的场景。

深度学习
深度学习是神经网络和机器学习的进化,是人工智能社区的创意。它学习了人类思维在特定场景中的工作方式,然后在这项工作上比人类做得更好!例如,IBM 的 Watson 与自己下国际象棋,并在游戏中取得了很大进步,最终击败了世界冠军。谷歌的 AlphaGo 也学会了如何玩围棋游戏,一遍又一遍地玩它以提高自己,并成为冠军。

人工智能、机器学习和深度学习正在不断发展。参与数据科学的每个人都希望推进这些概念以改善我们的日常生活。而开源社区、私营企业、科学家和政府机构都在为此共同努力。
096b93853c236ab909851764a79c7d77644224.jpg
总而言之,虽然 AI 有助于创建智能机器,但机器学习有助于构建 AI 驱动的应用。深度学习是机器学习的一个子集。它通过利用复杂算法处理大量数据来训练特定模型。由于狭义 AI 极难开发,机器学习正在通过刚性计算解决这一领域的机遇。至少对于实现通用 AI,深度学习有助于将 AI 和机器学习结合在一起。

目录
打赏
0
0
0
0
26
分享
相关文章
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
198 3
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
51 8
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
410 9
揭秘AI:深度学习的奥秘与实践
本文将深入浅出地探讨人工智能中的一个重要分支——深度学习。我们将从基础概念出发,逐步揭示深度学习的原理和工作机制。通过生动的比喻和实际代码示例,本文旨在帮助初学者理解并应用深度学习技术,开启AI之旅。
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第27天】本文探讨了深度学习技术在医学影像诊断中的最新进展,特别是在卷积神经网络(CNN)的应用。文章介绍了深度学习在识别肿瘤、病变等方面的优势,并提供了一个简单的Python代码示例,展示如何准备医学影像数据集。同时强调了数据隐私和伦理的重要性,展望了AI在医疗领域的未来前景。
275 2
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】在人工智能的推动下,个性化学习系统逐渐成为教育领域的重要趋势。深度学习作为AI的核心技术,在构建个性化学习系统中发挥关键作用。本文探讨了深度学习在个性化推荐系统、智能辅导系统和学习行为分析中的应用,并提供了代码示例,展示了如何使用Keras构建模型预测学生对课程的兴趣。尽管面临数据隐私和模型可解释性等挑战,深度学习仍有望为教育带来更个性化和高效的学习体验。
395 0
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第26天】近年来,深度学习技术在医学影像诊断中的应用日益广泛,通过训练大量医学影像数据,实现对疾病的准确诊断。例如,卷积神经网络(CNN)已成功用于识别肺癌、乳腺癌等疾病。深度学习不仅提高了诊断准确性,还缩短了诊断时间,提升了患者体验。然而,数据隐私、数据共享和算法透明性等问题仍需解决。未来,AI将在医学影像诊断中发挥更大作用,成为医生的得力助手。
441 0
“龟速”到“光速”?算力如何加速 AI 应用进入“快车道”
阿里云将联合英特尔、蚂蚁数字科技专家,带来“云端进化论”特别直播。
51 11
破茧成蝶:传统J2EE应用无缝升级AI原生
本文探讨了技术挑战和解决方案,还提供了具体的实施步骤,旨在帮助企业顺利实现从传统应用到智能应用的过渡。
破茧成蝶:传统J2EE应用无缝升级AI原生
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等