用了那么久的Lombok,你知道它的原理么?

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: 在写Java代码的时候,最烦写setter/getter方法,自从有了Lombok插件不用再写那些方法之后,感觉再也回不去了,那你们是否好奇过Lombok是怎么把setter/getter方法给你加上去的呢?有的同学说我们Java引入Lombok之后会污染依赖包,那我们可不可以自己写一个工具来代替Lombok呢?

image.png

作者 | 王再军(曦峰)
来源 | 阿里开发者公众号

序言

在写Java代码的时候,最烦写setter/getter方法,自从有了Lombok插件不用再写那些方法之后,感觉再也回不去了,那你们是否好奇过Lombok是怎么把setter/getter方法给你加上去的呢?有的同学说我们Java引入Lombok之后会污染依赖包,那我们可不可以自己写一个工具来代替Lombok呢?

知识点

  • Java编译过程
  • 了解Lombok原理
  • 了解插入式注解处理器

分析

序言提到的问题其实都是同一个问题,就是如何去获取和修改Java源代码?

要回答这个问题,我们需要回答这几个问题:

  1. Java编译器是如何解析Java源代码的?
  2. 编译器编译源代码都有哪些步骤?
  3. 我们在编译器工作的时候,怎么才能去增加内容或者是进行代码分析?

希望大家看完本文能够自己写一个简易的Lombok工具。

回答

如何解析源代码

其实从我们的代码到被编译,中间隔了一个数据结构,叫做AST(抽象树)。具体的形式,可以查看下面的图片。右边的便是AST的数据结构了。

image.png

代码编译都有哪些步骤

整个编译过程大致如下:

image.png

图片来自openjdk

1、初始化插入注解处理器

2、解析与填充符号表过程

a.词法分析、语法分析。将源代码的字符流转变为标记集合,构造出抽象语法树。

b.填充符号表。产生符号地址和符号信息。

3、插入式注解处理器的注解处理过程:插入式注解处理器的执行阶段。后面我会给大家带来两个此方面的实用实战例子。

4、分析与字节码生成过程

a.标注检查。对语法的静态信息检查。

b.数据流及控制流分析。对程序动态运行过程进行检查。

c.解语法糖。将简化代码编写的语法糖还原为原有的形式。

d.字节码生成。将前面各个步骤所生成的信息转化成为字节码。

我们知道了上面的理论之后,接下来我们进行实战。带着大家一起去修改AST(抽象树)。添加自己的代码。

实战

如何自己实现一个自动添加Setter/Getter的工具

首先,我们创建一个自己的注解。

@Retention(RetentionPolicy.SOURCE) // 注解只在源码中保留
@Target(ElementType.TYPE) // 用于修饰类
public @interface MySetterGetter {
}

创建一个需要生成setter/getter方法的实体类

@MySetterGetter  // 打上我们的注解
public class Test {
    private String wzj;
}

接下来就来看一看如何来生成我们想要的字符串。

整体代码如下:

@SupportedAnnotationTypes("com.study.practice.nameChecker.MySetterGetter")
@SupportedSourceVersion(SourceVersion.RELEASE_8)
public class MySetterGetterProcessor extends AbstractProcessor {
    // 主要是输出信息
    private Messager messager;
    private JavacTrees javacTrees;

    private TreeMaker treeMaker;
    private Names names;
    @Override
    public synchronized void init(ProcessingEnvironment processingEnv) {
        super.init(processingEnv);
        this.messager = processingEnv.getMessager();
        this.javacTrees = JavacTrees.instance(processingEnv);
        Context context = ((JavacProcessingEnvironment)processingEnv).getContext();
        this.treeMaker = TreeMaker.instance(context);
        this.names = Names.instance(context);
    }

    @Override
    public boolean process(Set<? extends TypeElement> annotations, RoundEnvironment roundEnv) {
        // 拿到被注解标注的所有的类
        Set<? extends Element> elementsAnnotatedWith = roundEnv.getElementsAnnotatedWith(MySetterGetter.class);
        elementsAnnotatedWith.forEach(element -> {
            // 得到类的抽象树结构
            JCTree tree = javacTrees.getTree(element);
            // 遍历类,对类进行修改
            tree.accept(new TreeTranslator(){
                @Override
                public void visitClassDef(JCTree.JCClassDecl jcClassDecl) {
                    List<JCTree.JCVariableDecl> jcVariableDeclList = List.nil();
                    // 在抽象树中找出所有的变量
                    for(JCTree jcTree: jcClassDecl.defs){
                        if (jcTree.getKind().equals(Tree.Kind.VARIABLE)){
                            JCTree.JCVariableDecl jcVariableDecl = (JCTree.JCVariableDecl)jcTree;
                            jcVariableDeclList = jcVariableDeclList.append(jcVariableDecl);
                        }
                    }
                    
                    // 对于变量进行生成方法的操作
                    for (JCTree.JCVariableDecl jcVariableDecl : jcVariableDeclList) {
                        messager.printMessage(Diagnostic.Kind.NOTE, jcVariableDecl.getName() + " has been processed");
                        jcClassDecl.defs = jcClassDecl.defs.prepend(makeSetterMethodDecl(jcVariableDecl));

                        jcClassDecl.defs = jcClassDecl.defs.prepend(makeGetterMethodDecl(jcVariableDecl));
                    }


        // 生成返回对象
        JCTree.JCExpression methodType = treeMaker.Type(new Type.JCVoidType());

        return treeMaker.MethodDef(treeMaker.Modifiers(Flags.PUBLIC), getNewSetterMethodName(jcVariableDecl.getName()), methodType, List.nil(), parameters, List.nil(), block, null);
    }
    /**
     * 生成 getter 方法
     * @param jcVariableDecl
     * @return
     */
    private JCTree.JCMethodDecl makeGetterMethodDecl(JCTree.JCVariableDecl jcVariableDecl){
        ListBuffer<JCTree.JCStatement> statements = new ListBuffer<>();
        // 生成表达式
        JCTree.JCReturn aReturn = treeMaker.Return(treeMaker.Ident(jcVariableDecl.getName()));
        statements.append(aReturn);
        JCTree.JCBlock block = treeMaker.Block(0, statements.toList());
        // 无入参
        // 生成返回对象
        JCTree.JCExpression returnType = treeMaker.Type(jcVariableDecl.getType().type);
        return treeMaker.MethodDef(treeMaker.Modifiers(Flags.PUBLIC), getNewGetterMethodName(jcVariableDecl.getName()), returnType, List.nil(), List.nil(), List.nil(), block, null);
    }
    /**
     * 拼装Setter方法名称字符串
     * @param name
     * @return
     */
    private Name getNewSetterMethodName(Name name) {
        String s = name.toString();
        return names.fromString("set" + s.substring(0,1).toUpperCase() + s.substring(1, name.length()));
    }
    /**
     * 拼装 Getter 方法名称的字符串
     * @param name
     * @return
     */
    private Name getNewGetterMethodName(Name name) {
        String s = name.toString();
        return names.fromString("get" + s.substring(0,1).toUpperCase() + s.substring(1, name.length()));
    }
    /**
     * 生成表达式
     * @param lhs
     * @param rhs
     * @return
     */
    private JCTree.JCExpressionStatement makeAssignment(JCTree.JCExpression lhs, JCTree.JCExpression rhs) {
        return treeMaker.Exec(
                treeMaker.Assign(lhs, rhs)
        );
    }
}

代码有点多,我们逐一拆解说明:

下面这是整个代码结构的脑图,后面的讲解会基于这个顺序。

image.png

a. 注解

@SupportedAnnotationTypes 表示我们需要监听的注解,比如我们之前定义的 @MySetterGetter。

@SupportedSourceVersion 表示我们想要对什么版本的Java源代码进行处理。

b. 父类

AbstractProcessor是本次的核心类,编译器在编译的时候会扫描此类的子类。其中有一个子类必须实现的核心方法 public boolean process(Set<? extends TypeElement> annotations, RoundEnvironment roundEnv),此方法如果是返回为true就说明编译的那个类抽象树的结构又变化,需要重新进行词法分析和语法分析(可以查看上面提到的那个编译流程图)。如果返回的是false就说明没有变化。

c. process方法

主要的操作逻辑是:

1、拿到所有被我们MySetterGetter标注的类。

2、遍历所有的类,生成类的抽象树结构。

3、对类进行操作:

a.找到类中所有的变量。

b.对变量进行生成Set和Get方法。

4、返回 true,说明类结构变了,需要重新解析。如果是false说明没有变,不用重新解析。

d. 操作JCTree树

主要是在操作抽象树,可以查看文末附件中的文章进行学习。

e. 方法名称拼接

这一块儿和字符串拼接没啥区别,用过反射的同学应该也都清楚这个操作了。

到此为止,我们就已经介绍完了Lombok的原理。怎么样是不是很简单。接下来,就让我们把它运行起来,投入到实战之中。

f. 运行

最后来看一下如何正确的运行这个我们写的工具。

1.环境

我的系统环境是 macOs Monterey;

java版本是

openjdk version "1.8.0_302"
OpenJDK Runtime Environment (Temurin)(build 1.8.0_302-b08)
OpenJDK 64-Bit Server VM (Temurin)(build 25.302-b08, mixed mode)

2.编译processor

在你存放 MySetterGetter 和 MySetterGetterProcessor 两个类的目录下进行编译。

javac -cp $JAVA_HOME/lib/tools.jar MySetterGetter.java MySetterGetterProcessor.java

执行成功后会出现这三个class文件。

image.png

3.声明插入式注解处理器

image.png

  • 在你的工程的resources下面创建一个包,名称为:META-INFO.services
  • 然后创建一个文件,名称为:javax.annotation.processing.Processor
  • 将你的注解处理器的地址填入,我的配置是这样的:

com.study.practice.nameChecker.MySetterGetterProcessor

4.用我们的工具去编译目标类

比如我们本次是要编译那个test.java。

它的内容再回顾一下:

@MySetterGetter  // 打上我们的注解
public class Test {
    private String wzj;
}

然后我们就去编译它(注意类前面的路径。这个你们得换成自己的工程目录。)

javac -processor com.study.practice.nameChecker.MySetterGetterProcessor com/study/practice/nameChecker/Test.java

执行之后如果没有修改我的代码的话会打印这几个字符串:

process 1
process 2
注: wzj has been processed
process 1

最后会生成Test.class文件。

image.png

5.成果

最后的class文件解析出来就是这个样子的。如下图所示:

image.png

看到Setter/Getter方法就说明我们已经大功告成了!是不是很简单。

到此为止,我们就学会了如何自己写一个属于自己的简易Lombok的插件了。

附件


ModelScope开源模型社区评测征集令

ModelScope开源模型社区评测专场重磅来袭,发布你的评测,免费使用模型库搭建属于你的应用,有机会获得AirPods和阿里云定制礼品,更有多重福利

相关文章
|
2月前
|
存储 Java 关系型数据库
高效连接之道:Java连接池原理与最佳实践
在Java开发中,数据库连接是应用与数据交互的关键环节。频繁创建和关闭连接会消耗大量资源,导致性能瓶颈。为此,Java连接池技术通过复用连接,实现高效、稳定的数据库连接管理。本文通过案例分析,深入探讨Java连接池的原理与最佳实践,包括连接池的基本操作、配置和使用方法,以及在电商应用中的具体应用示例。
79 5
|
3月前
|
存储 算法 Java
Java HashSet:底层工作原理与实现机制
本文介绍了Java中HashSet的工作原理,包括其基于HashMap实现的底层机制。通过示例代码展示了HashSet如何添加元素,并解析了add方法的具体过程,包括计算hash值、处理碰撞及扩容机制。
|
11天前
|
监控 Java API
探索Java NIO:究竟在哪些领域能大显身手?揭秘原理、应用场景与官方示例代码
Java NIO(New IO)自Java SE 1.4引入,提供比传统IO更高效、灵活的操作,支持非阻塞IO和选择器特性,适用于高并发、高吞吐量场景。NIO的核心概念包括通道(Channel)、缓冲区(Buffer)和选择器(Selector),能实现多路复用和异步操作。其应用场景涵盖网络通信、文件操作、进程间通信及数据库操作等。NIO的优势在于提高并发性和性能,简化编程;但学习成本较高,且与传统IO存在不兼容性。尽管如此,NIO在构建高性能框架如Netty、Mina和Jetty中仍广泛应用。
26 3
|
11天前
|
安全 算法 Java
Java CAS原理和应用场景大揭秘:你掌握了吗?
CAS(Compare and Swap)是一种乐观锁机制,通过硬件指令实现原子操作,确保多线程环境下对共享变量的安全访问。它避免了传统互斥锁的性能开销和线程阻塞问题。CAS操作包含三个步骤:获取期望值、比较当前值与期望值是否相等、若相等则更新为新值。CAS广泛应用于高并发场景,如数据库事务、分布式锁、无锁数据结构等,但需注意ABA问题。Java中常用`java.util.concurrent.atomic`包下的类支持CAS操作。
43 2
|
2月前
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
|
2月前
|
Java
Java之CountDownLatch原理浅析
本文介绍了Java并发工具类`CountDownLatch`的使用方法、原理及其与`Thread.join()`的区别。`CountDownLatch`通过构造函数接收一个整数参数作为计数器,调用`countDown`方法减少计数,`await`方法会阻塞当前线程,直到计数为零。文章还详细解析了其内部机制,包括初始化、`countDown`和`await`方法的工作原理,并给出了一个游戏加载场景的示例代码。
Java之CountDownLatch原理浅析
|
2月前
|
Java 索引 容器
Java ArrayList扩容的原理
Java 的 `ArrayList` 是基于数组实现的动态集合。初始时,`ArrayList` 底层创建一个空数组 `elementData`,并设置 `size` 为 0。当首次添加元素时,会调用 `grow` 方法将数组扩容至默认容量 10。之后每次添加元素时,如果当前数组已满,则会再次调用 `grow` 方法进行扩容。扩容规则为:首次扩容至 10,后续扩容至原数组长度的 1.5 倍或根据实际需求扩容。例如,当需要一次性添加 100 个元素时,会直接扩容至 110 而不是 15。
Java ArrayList扩容的原理
|
2月前
|
存储 Java 关系型数据库
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践,包括连接创建、分配、复用和释放等操作,并通过电商应用实例展示了如何选择合适的连接池库(如HikariCP)和配置参数,实现高效、稳定的数据库连接管理。
72 2
|
2月前
|
Java 数据格式 索引
使用 Java 字节码工具检查类文件完整性的原理是什么
Java字节码工具通过解析和分析类文件的字节码,检查其结构和内容是否符合Java虚拟机规范,确保类文件的完整性和合法性,防止恶意代码或损坏的类文件影响程序运行。
55 5
|
2月前
|
算法 Java 数据库连接
Java连接池技术,从基础概念出发,解析了连接池的工作原理及其重要性
本文详细介绍了Java连接池技术,从基础概念出发,解析了连接池的工作原理及其重要性。连接池通过复用数据库连接,显著提升了应用的性能和稳定性。文章还展示了使用HikariCP连接池的示例代码,帮助读者更好地理解和应用这一技术。
63 1