原子操作原子操作的适用场景

简介: 原子操作原子操作的适用场景

CUDA原子操作详解及其适用场景

CUDA中的原子操作本质上是让线程在某个内存单元完成读-修改-写的过程中不被其他线程打扰.

官方的编程手册上是这么说的:

原子函数对驻留在全局或共享内存中的一个 32 位或 64 位字执行读-修改-写原子操作

举个例子来说, 我有很多线程. 每个线程计算出了一个结果, 我需要把所有的结果加在一起, 如下图所示.

执行到这一步时, 有很多线程想读取X的值, 并加上另一个值. 如果你在你的Kernel程序最后面直接写 x=x+a, 那么当执行到这里的时候, 一个线程在读的时候, 可能另一个线程就在写. 这会产生未定义的错误.

这时候, 你就需要原子操作来解决这个问题.

当你的一个线程使用原子加操作在这里, 另一个线程也像做原子加操作的时候, 它就会产生等待. 直到上一个操作完成. 这里会产生一个队列, one by one的执行. 如下图所示.

上面是原子加的操作示例.

实际上还有很多种原子操作, 详细信息如下所示:

atomicAdd()

int atomicAdd(int* address, int val);
unsigned int atomicAdd(unsigned int* address,
                       unsigned int val);
unsigned long long int atomicAdd(unsigned long long int* address,
                                 unsigned long long int val);
float atomicAdd(float* address, float val);
double atomicAdd(double* address, double val);
__half2 atomicAdd(__half2 *address, __half2 val);
__half atomicAdd(__half *address, __half val);
__nv_bfloat162 atomicAdd(__nv_bfloat162 *address, __nv_bfloat162 val);
__nv_bfloat16 atomicAdd(__nv_bfloat16 *address, __nv_bfloat16 val);

读取位于全局或共享内存中地址 address 的 16 位、32 位或 64 位字 old,计算 (old + val),并将结果存储回同一地址的内存中。这三个操作在一个原子事务中执行。该函数返回old

atomicAdd() 的 32 位浮点版本仅受计算能力 2.x 及更高版本的设备支持。

atomicAdd() 的 64 位浮点版本仅受计算能力 6.x 及更高版本的设备支持。

atomicAdd() 的 32 位 __half2 浮点版本仅受计算能力 6.x 及更高版本的设备支持。 __half2__nv_bfloat162 加法操作的原子性分别保证两个 __half__nv_bfloat16 元素中的每一个;不保证整个 __half2__nv_bfloat162 作为单个 32 位访问是原子的。

atomicAdd() 的 16 位 __half 浮点版本仅受计算能力 7.x 及更高版本的设备支持。

atomicAdd() 的 16 位 __nv_bfloat16 浮点版本仅受计算能力 8.x 及更高版本的设备支持。

atomicSub()

int atomicSub(int* address, int val);
unsigned int atomicSub(unsigned int* address,
                       unsigned int val);

读取位于全局或共享内存中地址address的 32 位字 old,计算 (old - val),并将结果存储回同一地址的内存中。 这三个操作在一个原子事务中执行。 该函数返回old

atomicExch()

int atomicExch(int* address, int val);
unsigned int atomicExch(unsigned int* address,
                        unsigned int val);
unsigned long long int atomicExch(unsigned long long int* address,
                                  unsigned long long int val);
float atomicExch(float* address, float val);

读取位于全局或共享内存中地址address的 32 位或 64 位字 old 并将 val 存储回同一地址的内存中。 这两个操作在一个原子事务中执行。 该函数返回old

atomicMin()

int atomicMin(int* address, int val);
unsigned int atomicMin(unsigned int* address,
                       unsigned int val);
unsigned long long int atomicMin(unsigned long long int* address,
                                 unsigned long long int val);
long long int atomicMin(long long int* address,
                                long long int val);

读取位于全局或共享内存中地址address的 32 位或 64 位字 old,计算 oldval 的最小值,并将结果存储回同一地址的内存中。 这三个操作在一个原子事务中执行。 该函数返回old

atomicMin() 的 64 位版本仅受计算能力 3.5 及更高版本的设备支持。

atomicMax()

int atomicMax(int* address, int val);
unsigned int atomicMax(unsigned int* address,
                       unsigned int val);
unsigned long long int atomicMax(unsigned long long int* address,
                                 unsigned long long int val);
long long int atomicMax(long long int* address,
                                 long long int val);

读取位于全局或共享内存中地址address的 32 位或 64 位字 old,计算 oldval 的最大值,并将结果存储回同一地址的内存中。 这三个操作在一个原子事务中执行。 该函数返回old

atomicMax() 的 64 位版本仅受计算能力 3.5 及更高版本的设备支持。

atomicInc()

unsigned int atomicInc(unsigned int* address,
                       unsigned int val);

读取位于全局或共享内存中地址address的 32 位字 old,计算 ((old >= val) ? 0 : (old+1)),并将结果存储回同一地址的内存中。 这三个操作在一个原子事务中执行。 该函数返回old

atomicDec()

unsigned int atomicDec(unsigned int* address,
                       unsigned int val);

读取位于全局或共享内存中地址address的 32 位字 old,计算 (((old == 0) || (old > val)) ? val : (old-1) ),并将结果存储回同一个地址的内存。 这三个操作在一个原子事务中执行。 该函数返回old

atomicCAS()

int atomicCAS(int* address, int compare, int val);
unsigned int atomicCAS(unsigned int* address,
                       unsigned int compare,
                       unsigned int val);
unsigned long long int atomicCAS(unsigned long long int* address,
                                 unsigned long long int compare,
                                 unsigned long long int val);
unsigned short int atomicCAS(unsigned short int *address, 
                             unsigned short int compare, 
                             unsigned short int val);

读取位于全局或共享内存中地址address的 16 位、32 位或 64 位字 old,计算 (old == compare ? val : old) ,并将结果存储回同一地址的内存中。 这三个操作在一个原子事务中执行。 该函数返回old(Compare And Swap)。

atomicAnd()

int atomicAnd(int* address, int val);
unsigned int atomicAnd(unsigned int* address,
                       unsigned int val);
unsigned long long int atomicAnd(unsigned long long int* address,
                                 unsigned long long int val);

读取位于全局或共享内存中地址address的 32 位或 64 位字 old,计算 (old & val),并将结果存储回同一地址的内存中。 这三个操作在一个原子事务中执行。 该函数返回old

atomicAnd() 的 64 位版本仅受计算能力 3.5 及更高版本的设备支持。

atomicOr()

int atomicOr(int* address, int val);
unsigned int atomicOr(unsigned int* address,
                      unsigned int val);
unsigned long long int atomicOr(unsigned long long int* address,
                                unsigned long long int val);

读取位于全局或共享内存中地址address的 32 位或 64 位字 old,计算 (old | val),并将结果存储回同一地址的内存中。 这三个操作在一个原子事务中执行。 该函数返回old

atomicOr() 的 64 位版本仅受计算能力 3.5 及更高版本的设备支持。

atomicXor()

int atomicXor(int* address, int val);
unsigned int atomicXor(unsigned int* address,
                       unsigned int val);
unsigned long long int atomicXor(unsigned long long int* address,
                                 unsigned long long int val);

读取位于全局或共享内存中地址address的 32 位或 64 位字 old,计算 (old ^ val),并将结果存储回同一地址的内存中。 这三个操作在一个原子事务中执行。 该函数返回old

atomicXor() 的 64 位版本仅受计算能力 3.5 及更高版本的设备支持。

目录
相关文章
|
缓存 并行计算 C++
实践教程|旋转目标检测模型-TensorRT 部署(C++)
实践教程|旋转目标检测模型-TensorRT 部署(C++)
476 0
使用云起实验室安装Stable Diffusion报错问题的解决
因为huggingface目前国内已无法访问,按照原有的手册安装时就会报错,本文给出解决办法,以顺利完成安装和使用
3407 0
|
存储 关系型数据库 MySQL
docker中数据卷的创建与挂载
【10月更文挑战第12天】
286 3
|
前端开发 开发者 UED
UI 框架:nav-ui&uni-ui&vant
本文档介绍了`nav-ui`、`uni-ui`和`vant`三个UI库的基本使用方法,包括图标、表格和树的使用示例,以及如何在项目中安装和配置这些UI组件。对于`nav-ui`,详细说明了图标组件的安装与使用,包括本地图标和第三方图标库的集成方式。`uni-ui`部分则重点讲解了CSS的使用方法。最后,`vant`部分提供了从项目创建到组件安装的具体步骤,以及如何将下载的组件正确地集成到项目中。
547 4
|
机器学习/深度学习 传感器 算法
【航迹】基于MN逻辑算法实现航迹关联和卡尔曼滤波外推附matlab代码
【航迹】基于MN逻辑算法实现航迹关联和卡尔曼滤波外推附matlab代码
|
数据安全/隐私保护 Windows 网络安全
2024年广东省网络系统管理样题第3套服务部署部分
2024年广东省网络系统管理样题第3套服务部署部分
2024年广东省网络系统管理样题第3套服务部署部分
|
Linux iOS开发 MacOS
conda 安装, 配置以及使用
conda 安装, 配置以及使用
1483 1
|
编解码 人工智能 移动开发
AIGC图像分辨率太低?快来试试像素感知扩散超分模型,你想要的细节都在这里
阿里巴巴最新自研的像素感知扩散超分模型已经开源,它把扩散模型强大的生成能力和像素级控制能力相结合,能够适应从老照片修复到AIGC图像超分的各种图像增强任务和各种图像风格,并且能够控制生成强度和增强风格。这项技术的直接应用之一是AIGC图像的后处理增强和二次生成,能够带来可观的效果提升。
1255 4
|
网络协议 算法 Linux
半道转嵌入式开发适合吗?(从事十年的我建议不要,你会后悔的)
半道转嵌入式开发适合吗?(从事十年的我建议不要,你会后悔的)

热门文章

最新文章