(7)FlinkSQL将kafka数据写入到mysql方式二

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
实时计算 Flink 版,5000CU*H 3个月
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: FlinkSQL将kafka数据写入到mysql方式二
public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);

        tableEnv.executeSql("CREATE TABLE WaterSensor (" +
                "id STRING," +
                "ts BIGINT," +
                "vc BIGINT," +
//                "`pt` TIMESTAMP(3),"+
//                "WATERMARK FOR pt AS pt - INTERVAL '10' SECOND" +
                "pt as PROCTIME() " +
                ") WITH (" +
                "'connector' = 'kafka'," +
                "'topic' = 'kafka_data_waterSensor'," +
                "'properties.bootstrap.servers' = '127.0.0.1:9092'," +
                "'properties.group.id' =  'test'," +
                "'scan.startup.mode' = 'earliest-offset'," +
//                "'json.fail-on-missing-field' = 'false'," +
//                "'json.ignore-parse-errors' = 'true'," +
                "'format' = 'json'" +
                ")"
        );

        tableEnv.executeSql("CREATE TABLE flinksink (" +
                "componentname STRING," +
                "componentcount BIGINT NOT NULL," +
                "componentsum BIGINT" +
                ") WITH (" +
                "'connector.type' = 'jdbc'," +
                "'connector.url' = 'jdbc:mysql://localhost:3306/testdb?characterEncoding=UTF-8&useUnicode=true&useSSL=false&tinyInt1isBit=false&allowPublicKeyRetrieval=true&serverTimezone=Asia/Shanghai'," +
                "'connector.table' = 'flinksink'," +
                "'connector.driver' =  'com.mysql.cj.jdbc.Driver'," +
                "'connector.username' = 'root'," +
                "'connector.password' = 'root'," +
                "'connector.write.flush.max-rows'='3'\r\n" +
                ")"
        );

        Table result = tableEnv.sqlQuery(
                "SELECT " +
                        "id as componentname, " +                //window_start, window_end,
                        "COUNT(ts) as componentcount ,SUM(ts) as componentsum " +
                        "FROM TABLE( " +
                        "TUMBLE( TABLE WaterSensor , " +
                        "DESCRIPTOR(pt), " +
                        "INTERVAL '10' SECOND)) " +
                        "GROUP BY id , window_start, window_end"
        );

//        //方式一:写入数据库
////        result.executeInsert("flinksink").print(); //;.insertInto("flinksink");
//
        //方式二:写入数据库
        tableEnv.createTemporaryView("ResultTable", result);
        tableEnv.executeSql("insert into flinksink SELECT * FROM ResultTable").print();

        env.execute();
    }
相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
24天前
|
消息中间件 关系型数据库 MySQL
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
|
8天前
|
存储 SQL 关系型数据库
【YashanDB知识库】MySQL迁移至崖山char类型数据自动补空格问题
**简介**:在MySQL迁移到崖山环境时,若字段类型为char(2),而应用存储的数据仅为'0'或'1',查询时崖山会自动补空格。原因是mysql的sql_mode可能启用了PAD_CHAR_TO_FULL_LENGTH模式,导致保留CHAR类型尾随空格。解决方法是与应用确认数据需求,可将崖山环境中的char类型改为varchar类型以规避补空格问题,适用于所有版本。
|
5天前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
1. 先更新Mysql,再更新Redis,如果更新Redis失败,可能仍然不⼀致 2. 先删除Redis缓存数据,再更新Mysql,再次查询的时候在将数据添加到缓存中 这种⽅案能解决1 ⽅案的问题,但是在⾼并发下性能较低,⽽且仍然会出现数据不⼀致的问题,⽐如线程1删除了 Redis缓存数据,正在更新Mysql,此时另外⼀个查询再查询,那么就会把Mysql中⽼数据⼜查到 Redis中 1. 使用MQ异步同步, 保证数据的最终一致性 我们项目中会根据业务情况 , 使用不同的方案来解决Redis和Mysql的一致性问题 : 1. 对于一些一致性要求不高的场景 , 不做处理例如 : 用户行为数据 ,
|
26天前
|
消息中间件 关系型数据库 MySQL
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
本教程展示如何使用Flink CDC YAML快速构建从MySQL到Kafka的流式数据集成作业,涵盖整库同步和表结构变更同步。无需编写Java/Scala代码或安装IDE,所有操作在Flink CDC CLI中完成。首先准备Flink Standalone集群和Docker环境(包括MySQL、Kafka和Zookeeper),然后通过配置YAML文件提交任务,实现数据同步。教程还介绍了路由变更、写入多个分区、输出格式设置及上游表名到下游Topic的映射等功能,并提供详细的命令和示例。最后,包含环境清理步骤以确保资源释放。
292 2
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
|
1月前
|
Java 关系型数据库 MySQL
SpringBoot 通过集成 Flink CDC 来实时追踪 MySql 数据变动
通过详细的步骤和示例代码,您可以在 SpringBoot 项目中成功集成 Flink CDC,并实时追踪 MySQL 数据库的变动。
254 43
|
1月前
|
存储 SQL 关系型数据库
MySQL底层概述—4.InnoDB数据文件
本文介绍了InnoDB表空间文件结构及其组成部分,包括表空间、段、区、页和行。表空间是最高逻辑层,包含多个段;段由若干个区组成,每个区包含64个连续的页,页用于存储多条行记录。文章还详细解析了Page结构,分为通用部分(文件头与文件尾)、数据记录部分和页目录部分。此外,文中探讨了行记录格式,包括四种行格式(Redundant、Compact、Dynamic和Compressed),重点介绍了Compact行记录格式及其溢出机制。最后,文章解释了不同行格式的特点及应用场景,帮助理解InnoDB存储引擎的工作原理。
MySQL底层概述—4.InnoDB数据文件
|
26天前
|
SQL 关系型数据库 MySQL
基于SQL Server / MySQL进行百万条数据过滤优化方案
对百万级别数据进行高效过滤查询,需要综合使用索引、查询优化、表分区、统计信息和视图等技术手段。通过合理的数据库设计和查询优化,可以显著提升查询性能,确保系统的高效稳定运行。
48 9
|
1月前
|
监控 关系型数据库 MySQL
MySQL和SQLSugar百万条数据查询分页优化
在面对百万条数据的查询时,优化MySQL和SQLSugar的分页性能是非常重要的。通过合理使用索引、调整查询语句、使用缓存以及采用高效的分页策略,可以显著提高查询效率。本文介绍的技巧和方法,可以为开发人员在数据处理和查询优化中提供有效的指导,提升系统的性能和用户体验。掌握这些技巧后,您可以在处理海量数据时更加游刃有余。
100 9
|
1月前
|
存储 关系型数据库 MySQL
MySQL进阶突击系列(09)数据磁盘存储模型 | 一行数据怎么存?
文中详细介绍了MySQL数据库中一行数据在磁盘上的存储机制,包括表空间、段、区、页和行的具体结构,以及如何设计和优化行数据存储以提高性能。
|
2月前
|
消息中间件 存储 缓存
kafka 的数据是放在磁盘上还是内存上,为什么速度会快?
Kafka的数据存储机制通过将数据同时写入磁盘和内存,确保高吞吐量与持久性。其日志文件按主题和分区组织,使用预写日志(WAL)保证数据持久性,并借助操作系统的页缓存加速读取。Kafka采用顺序I/O、零拷贝技术和批量处理优化性能,支持分区分段以实现并行处理。示例代码展示了如何使用KafkaProducer发送消息。