K8S 之 Flannel 的 vxlan 网络模式初步源码解析

本文涉及的产品
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
云解析 DNS,旗舰版 1个月
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
简介: 详细解析过 Flannel 的 vxlan 模式的网络通信原理,本篇将继续深入结合源码进行探索

简介

之前详细解析过Flannel的vxlan模式的网络通信原理,本篇将继续深入结合源码进行探索

前情提要

阅读本文需要知道flannel vxlan网络模式的网络请求路径,可以参考以前博主写的文章:K8S探索之Service+Flannel本机及跨主机网络访问原理详解

本篇的示例场景还是之前文章中的图,如下:

网络异常,图片无法展示
|

在主节点121.4.190.84,直接是可以ping通容器ip:10.244.1.8

➜  ~ ping 10.244.1.8
PING 10.244.1.8 (10.244.1.8) 56(84) bytes of data.
64 bytes from 10.244.1.8: icmp_seq=1 ttl=63 time=29.3 ms
64 bytes from 10.244.1.8: icmp_seq=2 ttl=63 time=29.3 ms
64 bytes from 10.244.1.8: icmp_seq=3 ttl=63 time=29.3 ms

本篇就以121.4.190.84 --> 10.244.1.8的网络请求路径开始探索下flannel的相关源码

源码探索

初始启动配置vxlan网卡

在主节点121.4.190.84,ping10.244.1.8时,由于后者不是公网ip,所以是不能直接ping的,在vxlan网络模式下,是将请求交给了vxlan网卡进行封包,封了一层后,包的请求目的地址换成了目标公网ip和vxlan的监听端口

在初次启动时,肯定得是vxlan网卡的添加了,手动配置的命令类似如下:

ip link add vxlan0 type vxlan \
   id 42 \
   dstport 4789 \
   dev enp0s8 \
   ......

flannel初次启动的时候肯定是要配置自己的vxlan,在机器上我们可以看到:

➜  ~ ifconfig
flannel.1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1450
        inet 10.244.0.0  netmask 255.255.255.255  broadcast 10.244.0.0
        inet6 fe80::f4f2:b0ff:fefa:7573  prefixlen 64  scopeid 0x20<link>
        ether f6:f2:b0:fa:75:73  txqueuelen 0  (Ethernet)
        RX packets 205910  bytes 22397966 (21.3 MiB)
        RX errors 0  dropped 0  overruns 0  frame 0
        TX packets 296287  bytes 41537899 (39.6 MiB)
        TX errors 0  dropped 8 overruns 0  carrier 0  collisions 0
➜  ~ ip -d link show dev flannel.1
39: flannel.1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state UNKNOWN mode DEFAULT group default
    link/ether f6:f2:b0:fa:75:73 brd ff:ff:ff:ff:ff:ff promiscuity 0
    vxlan id 1 local 172.17.16.14 dev eth0 srcport 0 0 dstport 8472 nolearning ageing 300 noudpcsum noudp6zerocsumtx noudp6zerocsumrx addrgenmode eui64 numtxqueues 1 numrxqueues 1 gso_max_size 65536 gso_max_segs 65535

在上面的查看中我们可以看flannel的vxlan网卡信息:vxlan id 1 local 172.17.16.14 dev eth0 srcport 0 0 dstport 8472 nolearning ageing 300 noudpcsum noudp6zerocsumtx noudp6zerocsumrx addrgenmode eui64 numtxqueues 1 numrxqueues 1 gso_max_size 65536 gso_max_segs 65535

使用的是宿主机的ip 172.17.16.14和网卡,监听在8472端口,所以需要我们的机器在配置的时候开放8472端口,其他的参数各位有兴趣的话可以去查一查

通过相关的关键字“flannel.”在源码中搜索,在源码的目录:backend/vxlan下的vxlan.go看到一个关键函数:

func (be *VXLANBackend) RegisterNetwork(ctx context.Context, wg *sync.WaitGroup, config *subnet.Config) (backend.Network, error) {
  // Parse our configuration
  cfg := struct {
    VNI           int
    Port          int
    GBP           bool
    Learning      bool
    DirectRouting bool
  }{
    VNI: defaultVNI,
  }
  if len(config.Backend) > 0 {
    if err := json.Unmarshal(config.Backend, &cfg); err != nil {
      return nil, fmt.Errorf("error decoding VXLAN backend config: %v", err)
    }
  }
  log.Infof("VXLAN config: VNI=%d Port=%d GBP=%v Learning=%v DirectRouting=%v", cfg.VNI, cfg.Port, cfg.GBP, cfg.Learning, cfg.DirectRouting)
  var dev, v6Dev *vxlanDevice
  var err error
  if config.EnableIPv4 {
    devAttrs := vxlanDeviceAttrs{
      vni:       uint32(cfg.VNI),
      name:      fmt.Sprintf("flannel.%v", cfg.VNI),
      vtepIndex: be.extIface.Iface.Index,
      vtepAddr:  be.extIface.IfaceAddr,
      vtepPort:  cfg.Port,
      gbp:       cfg.GBP,
      learning:  cfg.Learning,
    }
    dev, err = newVXLANDevice(&devAttrs)
    if err != nil {
      return nil, err
    }
    dev.directRouting = cfg.DirectRouting
  }
  if config.EnableIPv6 {
    v6DevAttrs := vxlanDeviceAttrs{
      vni:       uint32(cfg.VNI),
      name:      fmt.Sprintf("flannel-v6.%v", cfg.VNI),
      vtepIndex: be.extIface.Iface.Index,
      vtepAddr:  be.extIface.IfaceV6Addr,
      vtepPort:  cfg.Port,
      gbp:       cfg.GBP,
      learning:  cfg.Learning,
    }
    v6Dev, err = newVXLANDevice(&v6DevAttrs)
    if err != nil {
      return nil, err
    }
    v6Dev.directRouting = cfg.DirectRouting
  }
  subnetAttrs, err := newSubnetAttrs(be.extIface.ExtAddr, be.extIface.ExtV6Addr, uint16(cfg.VNI), dev, v6Dev)
  if err != nil {
    return nil, err
  }
  lease, err := be.subnetMgr.AcquireLease(ctx, subnetAttrs)
  switch err {
  case nil:
  case context.Canceled, context.DeadlineExceeded:
    return nil, err
  default:
    return nil, fmt.Errorf("failed to acquire lease: %v", err)
  }
  // Ensure that the device has a /32 address so that no broadcast routes are created.
  // This IP is just used as a source address for host to workload traffic (so
  // the return path for the traffic has an address on the flannel network to use as the destination)
  if config.EnableIPv4 {
    if err := dev.Configure(ip.IP4Net{IP: lease.Subnet.IP, PrefixLen: 32}, config.Network); err != nil {
      return nil, fmt.Errorf("failed to configure interface %s: %w", dev.link.Attrs().Name, err)
    }
  }
  if config.EnableIPv6 {
    if err := v6Dev.ConfigureIPv6(ip.IP6Net{IP: lease.IPv6Subnet.IP, PrefixLen: 128}, config.IPv6Network); err != nil {
      return nil, fmt.Errorf("failed to configure interface %s: %w", v6Dev.link.Attrs().Name, err)
    }
  }
  return newNetwork(be.subnetMgr, be.extIface, dev, v6Dev, ip.IP4Net{}, lease)
}

其中的vni,port之类令人熟悉,于是我们追踪其调用链路,发现其实在系统启动时的main函数中进行调用的,符合我们的猜测,是在flannel启动时进行配置

其中还发现了,linux和Windows有不同的实现文件,而不同系统好像是通过下面的源码中的关键字生效的,又学到了一手

//go:build !windows
// +build !windows

当然其中还有很多的细节,留待后面探索,本篇先初步关键请求链路熟悉下源码,知道了核心路径后,出问题想查看的话,能提供思路上的帮助

路由和fdb的自动配置

在上面配置好vxlan网卡后,我们的请求经过大致如下:

  1. 请求10.244.1.8,转到本机的vxlan网卡flannel.1进行处理
  2. 将目标公网ip:106.55.227.160作为封包后的目标ip

上面两步都需要进行配置,首先1是要配置本机的路由,让10.244.1.8的请求转到网卡flannel.1进行处理,我们查看机器上的路由,确实是有,如下:

➜  ~ route
Kernel IP routing table
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
10.244.1.0      10.244.1.0      255.255.255.0   UG    0      0        0 flannel.1
10.244.4.0      10.244.4.0      255.255.255.0   UG    0      0        0 flannel.1

其中就吧10.244.1.0/24 这个网段都交给了网卡flannel.1进行处理

路由配置这一步,得是flannel进行处理,如新增了一台机器(目前试验下来,一台机器对应一个子网),需要添加相关的路由

第二步也很关键,请求的是10.244.1.8,vxlan怎么知道目标地址是公网:106.55.227.160,这个是通过fdb进行实现的(vxlan这个功能都是操作系统已经有的,如果看到这迷糊,需要仔细再阅读下vxlan的原理介绍,可参考书籍:《Kubenetes网络权威指南:基础、原理与实践》),我们参考flannel的fdb可以看到:

➜  ~ bridge fdb show dev flannel.1
da:a9:48:cb:15:3b dst 106.55.227.160 self permanent
c6:8a:3b:81:2f:d1 dst 121.37.246.218 self permanent
# 添加命令
bridge fdb append da:a9:48:cb:15:3b dev flannel.0 dst 106.55.227.160

上面的fdb就是目标机器人Mac地址和公网ip的关系,如da:a9:48:cb:15:3b对应的就是106.55.227.160,而106.55.227.160是机器106.55.227.160的vxlan网卡:

➜  ~ ifconfig
flannel.1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1450
        inet 10.244.1.0  netmask 255.255.255.255  broadcast 10.244.1.0
        inet6 fe80::d8a9:48ff:fecb:153b  prefixlen 64  scopeid 0x20<link>
        ether da:a9:48:cb:15:3b  txqueuelen 0  (Ethernet)

那还有一个疑问,我请求的10.244.1.8,你怎么知道请求发到106.55.227.160的vxlan网卡上,这个就是arp起的作用了,我们查看arp如下:

➜  ~ ip neigh
10.244.1.0 dev flannel.1 lladdr da:a9:48:cb:15:3b PERMANENT
# 添加命令
ip neigh add 10.244.1.0 lladdr da:a9:48:cb:15:3b flannel.1

大致的意思就是告诉这个ip的Mac地址是多少

通过上面的描述,我们知道了更详情的请求处理路径如下:

  1. ping 10.244.1.8
  2. 通过路由表配置,得到目标网络为10.224.1.0的都交给vxlan网卡处理
  3. 通过arp配置:10.224.1.0在arp中得到其对应目标机器Mac地址
  4. 通过fdb配置:得到Mac地址对应的ip地址

这样,请求就成功的抵达对面了

下面我们看下flannel中的相关源码

首先我们在运行日志中看到一个监听类型启动成功的日志:watching for new subnet leases

➜  ~ kubectl logs kube-flannel-ds-vwn7x -n kube-system
I0707 04:00:26.313804       1 main.go:533] Using interface with name eth0 and address 172.17.16.14
I0707 04:00:26.313867       1 main.go:546] Using 121.4.190.84 as external address
W0707 04:00:26.313888       1 client_config.go:608] Neither --kubeconfig nor --master was specified.  Using the inClusterConfig.  This might not work.
I0707 04:00:26.419108       1 kube.go:116] Waiting 10m0s for node controller to sync
I0707 04:00:26.419153       1 kube.go:299] Starting kube subnet manager
I0707 04:00:27.419250       1 kube.go:123] Node controller sync successful
I0707 04:00:27.419274       1 main.go:254] Created subnet manager: Kubernetes Subnet Manager - crio-master
I0707 04:00:27.419279       1 main.go:257] Installing signal handlers
I0707 04:00:27.419343       1 main.go:392] Found network config - Backend type: vxlan
I0707 04:00:27.419401       1 vxlan.go:123] VXLAN config: VNI=1 Port=0 GBP=false Learning=false DirectRouting=false
I0707 04:00:27.439715       1 main.go:307] Setting up masking rules
I0707 04:00:27.520123       1 main.go:315] Changing default FORWARD chain policy to ACCEPT
I0707 04:00:27.520207       1 main.go:323] Wrote subnet file to /run/flannel/subnet.env
I0707 04:00:27.520223       1 main.go:327] Running backend.
I0707 04:00:27.520233       1 main.go:345] Waiting for all goroutines to exit
I0707 04:00:27.520258       1 vxlan_network.go:59] watching for new subnet leases

直接在源码中找到:

# 注意是在vxlan_network.go文件中
func (nw *network) Run(ctx context.Context) {
  wg := sync.WaitGroup{}
  log.V(0).Info("watching for new subnet leases")
  events := make(chan []subnet.Event)
  wg.Add(1)
  go func() {
    subnet.WatchLeases(ctx, nw.subnetMgr, nw.SubnetLease, events)
    log.V(1).Info("WatchLeases exited")
    wg.Done()
  }()
  defer wg.Wait()
  for {
    evtBatch, ok := <-events
    if !ok {
      log.Infof("evts chan closed")
      return
    }
    nw.handleSubnetEvents(evtBatch)
  }
}

大意是启动了一个协程去获取容器添加(通过之前的分析,机器增加和容器增加应该要维护路由/arp/fdb表)引起的事件,在当前线程中进行事件的相关处理

使用channel进行同步通信实现,一个写一个读

subnet.WatchLeases(ctx, n.SM, n.SubnetLease, evts),在查看的过程中还有两种不同的实现,分别是local和kubenetes,猜测前者是不依赖与kubenetes的,单独部署的情况下启动的,这部分就不分析,kubenetes的源码还没有开始搞,留待日后分析

看看事件处理的函数,下面是处理网络添加相关:

func (nw *network) handleSubnetEvents(batch []subnet.Event) {
  for _, event := range batch {
    sn := event.Lease.Subnet
    v6Sn := event.Lease.IPv6Subnet
    attrs := event.Lease.Attrs
    if attrs.BackendType != "vxlan" {
      log.Warningf("ignoring non-vxlan v4Subnet(%s) v6Subnet(%s): type=%v", sn, v6Sn, attrs.BackendType)
      continue
    }
    var (
      vxlanAttrs, v6VxlanAttrs           vxlanLeaseAttrs
      directRoutingOK, v6DirectRoutingOK bool
      directRoute, v6DirectRoute         netlink.Route
      vxlanRoute, v6VxlanRoute           netlink.Route
    )
        # 路由添加相关的
    if event.Lease.EnableIPv4 && nw.dev != nil {
      if err := json.Unmarshal(attrs.BackendData, &vxlanAttrs); err != nil {
        log.Error("error decoding subnet lease JSON: ", err)
        continue
      }
      // This route is used when traffic should be vxlan encapsulated
      vxlanRoute = netlink.Route{
        LinkIndex: nw.dev.link.Attrs().Index,
        Scope:     netlink.SCOPE_UNIVERSE,
        Dst:       sn.ToIPNet(),
        Gw:        sn.IP.ToIP(),
      }
      vxlanRoute.SetFlag(syscall.RTNH_F_ONLINK)
      // directRouting is where the remote host is on the same subnet so vxlan isn't required.
      directRoute = netlink.Route{
        Dst: sn.ToIPNet(),
        Gw:  attrs.PublicIP.ToIP(),
      }
      if nw.dev.directRouting {
        if dr, err := ip.DirectRouting(attrs.PublicIP.ToIP()); err != nil {
          log.Error(err)
        } else {
          directRoutingOK = dr
        }
      }
    }
        ······
        # arp和fdb添加相关的
    switch event.Type {
    case subnet.EventAdded:
      if event.Lease.EnableIPv4 {
        if directRoutingOK {
          log.V(2).Infof("Adding direct route to subnet: %s PublicIP: %s", sn, attrs.PublicIP)
          if err := netlink.RouteReplace(&directRoute); err != nil {
            log.Errorf("Error adding route to %v via %v: %v", sn, attrs.PublicIP, err)
            continue
          }
        } else {
          log.V(2).Infof("adding subnet: %s PublicIP: %s VtepMAC: %s", sn, attrs.PublicIP, net.HardwareAddr(vxlanAttrs.VtepMAC))
          if err := nw.dev.AddARP(neighbor{IP: sn.IP, MAC: net.HardwareAddr(vxlanAttrs.VtepMAC)}); err != nil {
            log.Error("AddARP failed: ", err)
            continue
          }
          if err := nw.dev.AddFDB(neighbor{IP: attrs.PublicIP, MAC: net.HardwareAddr(vxlanAttrs.VtepMAC)}); err != nil {
            log.Error("AddFDB failed: ", err)
            // Try to clean up the ARP entry then continue
            if err := nw.dev.DelARP(neighbor{IP: event.Lease.Subnet.IP, MAC: net.HardwareAddr(vxlanAttrs.VtepMAC)}); err != nil {
              log.Error("DelARP failed: ", err)
            }
            continue
          }
          // Set the route - the kernel would ARP for the Gw IP address if it hadn't already been set above so make sure
          // this is done last.
          if err := netlink.RouteReplace(&vxlanRoute); err != nil {
            log.Errorf("failed to add vxlanRoute (%s -> %s): %v", vxlanRoute.Dst, vxlanRoute.Gw, err)
            // Try to clean up both the ARP and FDB entries then continue
            if err := nw.dev.DelARP(neighbor{IP: event.Lease.Subnet.IP, MAC: net.HardwareAddr(vxlanAttrs.VtepMAC)}); err != nil {
              log.Error("DelARP failed: ", err)
            }
            if err := nw.dev.DelFDB(neighbor{IP: event.Lease.Attrs.PublicIP, MAC: net.HardwareAddr(vxlanAttrs.VtepMAC)}); err != nil {
              log.Error("DelFDB failed: ", err)
            }
            continue
          }
        }
      }
      ······
    case subnet.EventRemoved:
      ······
    default:
      log.Error("internal error: unknown event type: ", int(event.Type))
    }
  }
}

如上所示,在源码中也找到了route、arp、fdb相关的配置,猜测得到了印证

总结

本篇文章中通过分析ip请求的路径,结合如何手动配置,然后去找对应的源码进行印证,大致找到了flannel源码的vxlan核心代码,但没有具体分析,这个感觉还是需要时间和精力的,所以本篇就初步探索下,细节日后分析

总结来说核心就是基于操作系统的vxlan,使用程序代替手动配置route、arp、fdb表,实现了跨主机的容器通信:

  1. 路由表配置:将目标网络的请求都交给vxlan网卡处理
  2. arp配置:arp中得到其对应目标机器Mac地址
  3. fdb配置:得到Mac地址对应的ip地址
相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
5天前
|
存储 安全 网络安全
网络安全的屏障与钥匙:漏洞防御与加密技术深度解析
【10月更文挑战第20天】在数字世界的迷宫中,网络安全是守护我们数据宝藏的坚固盾牌和锋利钥匙。本篇文章将带您穿梭于网络的缝隙之间,揭示那些潜藏的脆弱点—网络安全漏洞,同时探索如何通过现代加密技术加固我们的数字堡垒。从基本概念到实战策略,我们将一同揭开网络安全的神秘面纱,提升您的安全意识,保护个人信息不受侵犯。
38 25
|
1天前
|
边缘计算 自动驾驶 5G
|
3天前
|
数据采集 机器学习/深度学习 数据挖掘
10种数据预处理中的数据泄露模式解析:识别与避免策略
在机器学习中,数据泄露是一个常见问题,指的是测试数据在数据准备阶段无意中混入训练数据,导致模型在测试集上的表现失真。本文详细探讨了数据预处理步骤中的数据泄露问题,包括缺失值填充、分类编码、数据缩放、离散化和重采样,并提供了具体的代码示例,展示了如何避免数据泄露,确保模型的测试结果可靠。
13 2
|
6天前
|
数据中心
|
5天前
|
人工智能 数据挖掘 大数据
排队免单与消费增值模式:融合玩法与优势解析
排队免单模式通过订单排队、奖励分配、加速与退出机制等,结合消费增值模式中的积分制度、利润入池与积分增值等,共同提升消费者参与度和忠诚度,促进商家销售增长。具体包括订单自动排队、大单拆小单、异业联盟、线上线下融合及数据分析优化等进阶玩法,以及积分增值模型演算,形成一套完整的消费者激励体系。
|
6天前
|
存储 监控 安全
深入解析Sysmon日志:增强网络安全与威胁应对的关键一环
在不断演进的网络安全领域中,保持对威胁的及时了解至关重要。Sysmon日志在这方面发挥了至关重要的作用,通过提供有价值的见解,使组织能够加强其安全姿态。Windows在企业环境中是主导的操作系统,因此深入了解Windows事件日志、它们的独特特性和局限性,并通过Sysmon进行增强,变得至关重要。
|
13天前
|
供应链 网络协议 数据安全/隐私保护
|
13天前
|
前端开发 算法 JavaScript
无界SaaS模式深度解析:算力算法、链接力、数据确权制度
私域电商的无界SaaS模式涉及后端开发、前端开发、数据库设计、API接口、区块链技术、支付和身份验证系统等多个技术领域。本文通过简化框架和示例代码,指导如何将核心功能转化为技术实现,涵盖用户管理、企业店铺管理、数据流量管理等关键环节。
|
17天前
|
运维 安全 网络协议
Python 网络编程:端口检测与IP解析
本文介绍了使用Python进行网络编程的两个重要技能:检查端口状态和根据IP地址解析主机名。通过`socket`库实现端口扫描和主机名解析的功能,并提供了详细的示例代码。文章最后还展示了如何整合这两部分代码,实现一个简单的命令行端口扫描器,适用于网络故障排查和安全审计。
19 0
|
19天前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
39 0

推荐镜像

更多