人工智能在制造业的应用

简介: 关于人工智能的研究和应用开始遍地开花。随着智能制造热潮的到来,人工智能应用已经贯穿于设计、生产、管理和服务等制造业的各个环节。

随着智能制造热潮的到来,人工智能应用已经贯穿于设计、生产、管理和服务等制造业的各个环节。
f45dbe398d8393b1f757782e9fe3149a88cb3e.jpg

人工智能的概念第一次被提出,是在20世纪50年代,距今已六十余年的时间。然而直到近几年,人工智能才迎来爆发式的增长,究其原因,主要在于日趋成熟的物联网、大数据、云计算等技术。

物联网使得大量数据能够被实时获取,大数据为深度学习提供了数据资源及算法支撑,云计算则为人工智能提供了灵活的计算资源。这些技术的有机结合,驱动着人工智能技术不断发展,并取得了实质性的进展。AlphaGo与李世石的人机大战,更是将人工智能推到了风口浪尖,引爆了新一轮的人工智能热潮。

此后的近几年,关于人工智能的研究和应用开始遍地开花。随着智能制造热潮的到来,人工智能应用已经贯穿于设计、生产、管理和服务等制造业的各个环节。

PART ONE

产品缺陷检测
782b89930691902e59464551128f02be07ec95.gif

由于深度学习的应用,制造业生产线的缺陷检测过程变得越来越智能。深度神经网络集成使计算机系统可以识别诸如刮擦、裂纹、泄漏等表面缺陷。

这一过程,通过应用图像分类,对象检测和实例分割算法,由数据科学家以给定缺陷检测任务训练视觉检查系统来完成。深度学习驱动检测系统,与高光学分辨率相机和GPU相结合,形成超越传统机器视觉的感知能力。

例如,可口可乐构建的基于AI视觉检测程序,已经可以诊断设施系统并检测产线问题,及时把检测到的问题反馈给技术专家进行解决。基于此,未来质量检测人员被李开复列为将被人工智能替代的工种。

新的检测技术包括合成数据、迁移学习和自监督学习等。在合成数据中,生成对抗网络(Generative Adversarial Networks,GAN)数据生成工具会检查质检员认为“正常”的图像,并合成缺陷图像,用于训练人工智能模型。同时,迁移学习与自监督学习,用于解决特定问题。随着数据积累,缺陷检测算法更加精确。

PART TWO

智能分拣
f306a6499a61223b9276389bd52c70ff0d77f2.gif

制造业上有许多需要分拣的作业,如果采用人工的作业,速度缓慢且成本高,而且还需要提供适宜的工作温度环境。如果采用工业机器人进行智能分拣,可以大幅降低成本,提高速度。

以分拣零件为例。需要分拣的零件通常并没有被整齐摆放,机器人虽然有摄像头可以看到零件,但却不知道如何把零件成功地捡起来。在这种情况下,利用机器学习技术,先让机器人随机进行一次分拣动作,然后告诉它这次动作是成功分捡到零件还是抓空了,经过多次训练之后,机器人就会知道按照怎样的顺序来分拣才有更高的成功率;分拣时夹哪个位置会有更高的捡起成功率;知道按照怎样的顺序分拣,成功率会更高。经过几个小时的学习,机器人的分拣成功率可以达到90%,和熟练工人的水平相当。

PART THREE

库房管理与物流

比如京东物流某库房,需要按照订单和发货地分拣成品,同时回收空的料箱,并把部分废料、废品扔进废料堆放处。这个工作每个班次由两名工人合作完成,库房内有粉尘和噪音,每天累计重复分拣动作要执行2000-3000次,虽然重物搬运由机械手完成,但仍是强度大、环境差、技术含量低的重复性工作。

企业用一台机器人替换每天三班倒的两个工位,机器人带有机器视觉系统,订单和发货地分拣可以扫RFID码,成品、空箱、废料废品的判断由AI学习算法逐步提高识别率,最初识别率只有62%左右,需要每个班次配合一个工人拾遗补缺,随着数据积累,AI识别模型不断完善,9个月后,综合识别率提高到96%的水平,成品识别和发货地分拣完全准确,已不需要库房留人补缺,只在废料废品回收时,捡出极少量的空箱即可。

PART FOUR

生产制造

福特曾经豪言:不管你要什么车,我都只生产黑色,这是流水线大生产的典型写照,但如果福特放在现状还是这种思路的话福特汽车只有死路一条。因为现在个性化越来越多,但是个性化生产的成本又非常巨大,那么只有一种途径就是大规模定制,利用个人消费数据进行分析后形成综合的订单,然后平台分发进行大规模生产进而降低成品单价,犀牛制造目前就是走的这条路子。但虽然电商具备大量的消费行为数据,但是数据永远是落后于实际需求的,这种应用场景需要将分析平台极大化准确率才能增加。

PART FIVE

远程运维服务

远程运维平台,通过物联网、大数据和人工智能算法等技术,对生产过程、生产设备的关键参数进行实时监测,对故障及时报警。由工业大数据分析及人工智能算法支撑的预测性维护和辅助决策等功能,可以进一步减少由于非计划停机造成的人员出差和停工延误,让工业企业的运维实现少人化、无人化、远程化的模式变革。

纵观全球,涉足工业人工智能领域的企业早已证明了这种技术的独特价值。人工智能技术在改善企业的生产力、效率、质量和成本等方面具备巨大潜力,无疑将成为赋能未来制造业的全新引擎。不过,企业的人工智能转型之旅任重道远。率先觉醒的企业必须坚定信念、勤练内功、即刻出发,在工业人工智能领域开疆拓土,力求将自己变成闪耀未来智能制造之光的灯塔。

相关文章
|
8天前
|
机器学习/深度学习 人工智能 自动驾驶
企业内训|AI大模型在汽车行业的前沿应用研修-某汽车集团
本课程是TsingtaoAI为某汽车集团高级项目经理设计研发,课程全面系统地解析AI的发展历程、技术基础及其在汽车行业的深度应用。通过深入浅出的理论讲解、丰富的行业案例分析以及实战项目训练,学员将全面掌握机器学习、深度学习、NLP与CV等核心技术,了解自动驾驶、智能制造、车联网与智能营销等关键应用场景,洞悉AI技术对企业战略布局的深远影响。
137 97
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
CogAgent-9B 是智谱AI基于 GLM-4V-9B 训练的专用Agent任务模型,支持高分辨率图像处理和双语交互,能够预测并执行GUI操作,广泛应用于自动化任务。
39 12
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
|
23小时前
|
机器学习/深度学习 人工智能 监控
AI在交通管理系统中的应用
AI在交通管理系统中的应用
29 21
|
23小时前
|
机器学习/深度学习 人工智能 运维
人工智能在事件管理中的应用
人工智能在事件管理中的应用
38 19
|
7天前
|
机器学习/深度学习 数据采集 人工智能
AI在用户行为分析中的应用:实现精准洞察与决策优化
AI在用户行为分析中的应用:实现精准洞察与决策优化
50 15
|
3天前
|
人工智能 API
新年课程开启:手把手教学,0基础5次课程学会搭建无限拓展的AI应用
你是否想过自己也能动手搭建一个AI应用?现在,这个目标触手可及!
|
5天前
|
机器学习/深度学习 数据采集 人工智能
人工智能在农业中的应用:智慧农业的未来
人工智能在农业中的应用:智慧农业的未来
28 11
|
6天前
|
人工智能 资源调度 调度
云上AI Infra解锁大模型创新应用
本节课程由阿里云智能集团资深技术专家王超分享,主题为AI基础设施的发展趋势。课程聚焦于AI Infra设计与Scaling Law,探讨了下一代AI基础设施的设计目标、功能升级及推理场景中的应用。主要内容包括高效支持大规模模型训练和推理、全球调度系统的设计、Rack level的Scale优化以及多租户容器化使用方式。通过这些改进,旨在提升并行效率、资源利用率及稳定性,推动AI基础设施迈向更高性能和更优调度的新阶段。
|
9天前
|
弹性计算 人工智能 自然语言处理
云工开物:阿里云弹性计算走进高校第2期,与北京大学研一学生共探AI时代下的应用创新
阿里云高校合作、弹性计算团队​于北京大学,开展了第2届​【弹性计算进校园】​交流活动。
|
8天前
|
机器学习/深度学习 传感器 人工智能
开源AI视频监控系统在监狱安全中的应用——实时情绪与行为分析、暴力预警技术详解
针对监狱环境中囚犯情绪波动和复杂人际互动带来的监控挑战,传统CCTV系统难以有效预警暴力事件。AI视频监控系统基于深度学习与计算机视觉技术,实现对行为、情绪的实时分析,尤其在低光环境下表现优异。该系统通过多设备协同、数据同步及自适应训练,确保高精度识别(95%以上)、快速响应(<5秒),并具备24小时不间断运行能力,极大提升了监狱安全管理的效率与准确性。