资源预测数字模型搭建思路分享

简介: 资源预测是项目管理过程中的一个环节,即通过搭建合适的数据模型,对未来的项目人力资源投入情况进行有效预测,可以更加精准的完成项目资源规划并能及时发现问题进行相关调整。

image.png

作者 | 喻琛涵(彦泓)
来源 | 阿里开发者公众号

业务背景

资源预测是项目管理过程中的一个环节,即通过搭建合适的数据模型,对未来的项目人力资源投入情况进行有效预测,可以更加精准的完成项目资源规划并能及时发现问题进行相关调整。


难题和痛点

PM排期时没有有效数据支撑资源使用情况,每次排期都需要找各个研发团队TL沟通,会产生很大的沟通成本。

线下维护项目资源投入信息会产生很多工作量,为研发团队和PM造成额外的管理成本。

手工维护会导致各团队标准不统一,无法进行大规模推广。


解决方案

【中心思想】通过日常项目管理流程,即可达到资源预测的目的,不给项目管理过程增加额外负担。

3.1基本要求

image.png

3.2具体步骤

  • 活动1:构思效果——搭建数据模型——(直接/数据加工)——建立数据源

    • 在前面3.1章节中提到的报表,即是想要的效果。
    • 参数和基础功能即为数据模型即为数据源,很明显这些数据源无法直接应用到效果展示,因此需要进行数据加工。
  • 活动2:先通过简单工具建立Demo,确认可行性,并对照使用过程逐步进行优化

    • 我选择通过Excel进行Demo处理,详情可见文末《PMO-资源预测_模板》。

image.png

  • 活动3:利用现有平台和工具实现线上化

    • 在确认数据结果稳定、可靠的前提下,就可以开始规划工具线上化,毕竟Excel处理数据量较大时会非常卡顿。

image.png


业务成果

  • PM排期时能提供有效数据支撑可用资源查询。
  • 减少研发、测试管理投入成本,通过日常项目管理流程(项目总轴和项目成员投入)只需要两步,即可达到资源预测的目标。【使用过程中逐渐发现优化点,目前正在设计更加简便的预测模型,争取做到无感预测】
  • 建立更科学的、体系化的数据预测模型,加强数字化管理基础能力、为资源投入偏差提供分析参考。

数字化管理的规划和思考

  • 数据源和加工的基础数据模型,在设计时,要素和维度要考虑充分,这样可以方便后期进行二次加工。
  • 尽量选择符合日常工作习惯的线上工具,可以向工具研发组提需求,也可以自行学习研发。因为本人是PM,因此总结了一套适合非研发同学使用的资料。
  • 从日常工作中发现痛点,总结规律和方法,通过小范围验证,进而提炼标准和流程,最终实现数字化管理动作。
  • 每个数字背后,都是真实的项目和人,关键在于怎么应用这些数字。
  • 如果是为了汇报,生搬硬套凑出来,参与的同学都会怀疑这些数字的意义;如果遇到问题,TL和PM该反馈的反馈,该上升的上升,不能为了凑而凑,辩证的执行。
  • 如果把数字化管理,与业产研月会、需求排序、需求排期等结合,并用于分析定位和辅助决策,将会非常有价值,且属于日常管理一部分。

《PMO-资源预测_模板》:https://zhuanlan.zhihu.com/p/547637165


重磅来袭!2022上半年阿里云社区最热电子书榜单!

千万阅读量、百万下载量、上百本电子书,近200位阿里专家参与编写。多元化选择、全领域覆盖,汇聚阿里巴巴技术实践精华,读、学、练一键三连。开发者藏经阁,开发者的工作伴侣~

相关文章
关于DC/DC电源模块的工作温度问题
关于DC/DC电源模块的工作温度问题 BOSHIDA DC/DC电源模块是一种将直流电源转换为其他电压或电流级别的设备。它通常由输入端、输出端、电感、开关管等部件组成。工作温度是影响电源模块性能和可靠性的一个重要参数。一个合适的工作温度范围可以保证模块的正常工作,并提供稳定的输出电压。
关于DC/DC电源模块的工作温度问题
|
数据挖掘
【SPSS】回归分析详细操作教程(附案例实战)(下)
【SPSS】回归分析详细操作教程(附案例实战)
2542 0
解决办法:defined but not used [-Werror=unused-variable]
解决办法:defined but not used [-Werror=unused-variable]
2456 0
|
Oracle 关系型数据库 Linux
Virtualbox上安装Linux系统(CentOS7)(图文超详细)
Virtualbox上安装Linux系统(CentOS7)(图文超详细)
5002 1
|
12月前
|
机器学习/深度学习 安全 算法
十大主流联邦学习框架:技术特性、架构分析与对比研究
联邦学习(FL)是保障数据隐私的分布式模型训练关键技术。业界开发了多种开源和商业框架,如TensorFlow Federated、PySyft、NVFlare、FATE、Flower等,支持模型训练、数据安全、通信协议等功能。这些框架在灵活性、易用性、安全性和扩展性方面各有特色,适用于不同应用场景。选择合适的框架需综合考虑开源与商业、数据分区支持、安全性、易用性和技术生态集成等因素。联邦学习已在医疗、金融等领域广泛应用,选择适配具体需求的框架对实现最优模型性能至关重要。
2302 79
十大主流联邦学习框架:技术特性、架构分析与对比研究
|
机器学习/深度学习 人工智能 算法
为什么ChatGPT等AI大模型都是基于Python开发?
为什么ChatGPT等AI大模型都是基于Python开发?
553 0
|
10月前
|
安全 小程序 Java
weixin027校园二手平台的设计与实现+ssm(文档+源码)_kaic
本项目基于微信小程序开发校园二手交易平台,旨在解决大学生闲置物品交易问题。系统采用Java语言和MySQL数据库设计,支持用户浏览、收藏、评价商品及发布闲置物品。管理员可审核商品和用户信息,确保交易安全。系统具备在线搜索功能,方便用户查找商品,并提供实时沟通渠道,增强平台透明度和用户体验。该平台简化了二手交易流程,满足了大学生对便捷、高效交易的需求,具有重要的实际应用价值。
|
人工智能 供应链 PyTorch
TimesFM 2.0:用 AI 预测流量、销量和金融市场等走势!谷歌开源超越统计方法的预测模型
TimesFM 2.0 是谷歌研究团队开源的时间序列预测模型,支持长达2048个时间点的单变量预测,具备零样本学习能力,适用于零售、金融、交通等多个领域。
1555 24
TimesFM 2.0:用 AI 预测流量、销量和金融市场等走势!谷歌开源超越统计方法的预测模型
|
JavaScript 前端开发 安全
[译] 在 Vue 组件中分离 UI 和业务逻辑。
[译] 在 Vue 组件中分离 UI 和业务逻辑。
go反射获取变量类型、值、结构体成员、结构体方法
go反射获取变量类型、值、结构体成员、结构体方法
265 0