Redis常见的应用场景

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: Redis常见的应用场景

大家好,我是小羽。

Redis 基于内存存储数据,可以极大的提高查询性能,对产品在架构上很好的补充。在某些场景下,可以充分的利用 Redis 的特性,大大提高效率。

缓存

对于热点数据,缓存以后可能读取数十万次,因此,对于热点数据,缓存的价值非常大。例如,分类栏目更新频率不高,但是绝大多数的页面都需要访问这个数据,因此读取频率相当高,可以考虑基于 Redis 实现缓存。

页面缓存

如果你使用的是服务器端内容渲染,你又不想为每个请求重新渲染每个页面,就可以使用 Redis 把常被请求的内容缓存起来,能够大大的降低页面请求的延迟,已经有很多框架用Redis来缓存页面,这就是页面静态化的一种方式。

// Set the page that will last 1 minute
SET key "<html>...</html>" EX 60

// Get the page
GET key

会话缓存

此外,还可以考虑使用 Redis 进行会话缓存。例如,将 web session 存放在 Redis 中。

Session 存储

这可能是应用最广的点了,相比较于类似 memcache 的 session 存储,Redis 具有缓存数据持久化的能力,当缓存因出现问题而重启后,之前的缓存数据还在那儿,这个就比较实用,避免了因为session突然消失带来的用户体验问题。

// Set session that will last 1 minute
SET randomHash "{userId}" EX 60

// Get userId
GET randomHash

时效性

例如验证码只有60秒有效期,超过时间无法使用,或者基于 Oauth2 的 Token 只能在 5 分钟内使用一次,超过时间也无法使用。

访问频率

出于减轻服务器的压力或防止恶意的洪水攻击的考虑,需要控制访问频率,例如限制 IP 在一段时间的最大访问量。

计数器

数据统计的需求非常普遍,通过原子递增保持计数。例如,应用数、资源数、点赞数、收藏数、分享数等。

int类型,incr方法

限流

以访问者的ip和其他信息作为key,访问一次增加一次计数,超过次数则返回false。

int类型,incr方法

购物车

社交列表

社交属性相关的列表信息,例如,用户点赞列表、用户分享列表、用户收藏列表、用户关注列表、用户粉丝列表等,使用 Hash 类型数据结构是个不错的选择。

记录用户判定信息

记录用户判定信息的需求也非常普遍,可以知道一个用户是否进行了某个操作。例如,用户是否点赞、用户是否收藏、用户是否分享等。

交集、并集和差集

在某些场景中,例如社交场景,通过交集、并集和差集运算,可以非常方便地实现共同好友,共同关注,共同偏好等社交关系。

热门列表

按照得分进行排序,例如,展示最热、点击率最高、活跃度最高等条件的排名列表。

排行榜

Redis 基于内存,可以非常快速高效的处理增加和减少的操作,相比于使用 SQL 请求的处理方式,性能的提升是非常巨大的。

Redis 的有序集合可以轻松实现“从一个大型列表中取得排名最高的N个元素”,毫秒级,而且非常简单。

// Add an item to the sorted set
ZADD sortedSet 1 "one"

// Get all items from the sorted set
ZRANGE sortedSet 0 -1

// Get all items from the sorted set with their score
ZRANGE sortedSet 0 -1 WITHSCORES

最新动态

按照时间顺序排列的最新动态,也是一个很好的应用,可以使用 Sorted Set 类型的分数权重存储 Unix 时间戳进行排序。

消息队列

Redis 能作为一个很好的消息队列来使用,依赖 List 类型利用 LPUSH 命令将数据添加到链表头部,通过 BRPOP 命令将元素从链表尾部取出。同时,市面上成熟的消息队列产品有很多,例如 RabbitMQ。因此,更加建议使用 RabbitMQ 作为消息中间件。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
相关文章
|
6月前
|
canal NoSQL 关系型数据库
Redis应用—7.大Value处理方案
本文介绍了一种用于监控Redis大key的方案设计及其实现步骤。主要内容包括:方案设计、安装与配置环境、binlog数据消费者。
238 29
Redis应用—7.大Value处理方案
|
2月前
|
NoSQL Java Redis
Redis基本数据类型及Spring Data Redis应用
Redis 是开源高性能键值对数据库,支持 String、Hash、List、Set、Sorted Set 等数据结构,适用于缓存、消息队列、排行榜等场景。具备高性能、原子操作及丰富功能,是分布式系统核心组件。
284 2
|
3月前
|
NoSQL 网络协议 Java
【Azure Redis】Redis服务端的故障转移(Failover)导致客户端应用出现15分钟超时问题的模拟及解决
在使用 Azure Cache for Redis 服务时,因服务端维护可能触发故障转移。Linux 环境下使用 Lettuce SDK 会遇到超时 15 分钟的已知问题。本文介绍如何通过重启 Primary 节点主动复现故障转移,并提供多种解决方案,包括调整 TCP 设置、升级 Lettuce 版本、配置 TCP_USER_TIMEOUT 及使用其他 SDK(如 Jedis)来规避此问题。
104 1
|
6月前
|
缓存 NoSQL Java
Redis应用—6.热key探测设计与实践
热key问题在高并发系统中可能导致数据层和服务层的严重瓶颈,如Redis集群瘫痪和用户体验下降。为解决此问题,京东开发了JdHotkey热key探测框架,具备实时性、准确性、集群一致性和高性能等特点。该框架由etcd集群、Client端jar包、Worker端集群和Dashboard控制台组成,通过分布式计算快速识别热key并推送至应用内存,有效减轻数据层负载,提升服务性能。JdHotkey适用于多种场景,安装部署简便,支持毫秒级热key探测和集群一致性维护。
286 61
Redis应用—6.热key探测设计与实践
|
4月前
|
NoSQL 算法 安全
redis分布式锁在高并发场景下的方案设计与性能提升
本文探讨了Redis分布式锁在主从架构下失效的问题及其解决方案。首先通过CAP理论分析,Redis遵循AP原则,导致锁可能失效。针对此问题,提出两种解决方案:Zookeeper分布式锁(追求CP一致性)和Redlock算法(基于多个Redis实例提升可靠性)。文章还讨论了可能遇到的“坑”,如加从节点引发超卖问题、建议Redis节点数为奇数以及持久化策略对锁的影响。最后,从性能优化角度出发,介绍了减少锁粒度和分段锁的策略,并结合实际场景(如下单重复提交、支付与取消订单冲突)展示了分布式锁的应用方法。
284 3
|
11月前
|
监控 NoSQL Java
场景题:百万数据插入Redis有哪些实现方案?
场景题:百万数据插入Redis有哪些实现方案?
132 1
场景题:百万数据插入Redis有哪些实现方案?
|
10月前
|
NoSQL 安全 测试技术
Redis游戏积分排行榜项目中通义灵码的应用实战
Redis游戏积分排行榜项目中通义灵码的应用实战
227 4
|
4月前
|
存储 NoSQL Java
从扣减库存场景来讲讲redis分布式锁中的那些“坑”
本文从一个简单的库存扣减场景出发,深入分析了高并发下的超卖问题,并逐步优化解决方案。首先通过本地锁解决单机并发问题,但集群环境下失效;接着引入Redis分布式锁,利用SETNX命令实现加锁,但仍存在死锁、锁过期等隐患。文章详细探讨了通过设置唯一标识、续命机制等方法完善锁的可靠性,并最终引出Redisson工具,其内置的锁续命和原子性操作极大简化了分布式锁的实现。最后,作者剖析了Redisson源码,揭示其实现原理,并预告后续关于主从架构下分布式锁的应用与性能优化内容。
194 0
|
6月前
|
缓存 NoSQL Java
Redis应用—8.相关的缓存框架
本文介绍了Ehcache和Guava Cache两个缓存框架及其使用方法,以及如何自定义缓存。主要内容包括:Ehcache缓存框架、Guava Cache缓存框架、自定义缓存。总结:Ehcache适合用作本地缓存或与Redis结合使用,Guava Cache则提供了更灵活的缓存管理和更高的并发性能。自定义缓存可以根据具体需求选择不同的数据结构和引用类型来实现特定的缓存策略。
333 16
Redis应用—8.相关的缓存框架
|
11月前
|
消息中间件 缓存 NoSQL
Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。
【10月更文挑战第4天】Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。随着数据增长,有时需要将 Redis 数据导出以进行分析、备份或迁移。本文详细介绍几种导出方法:1)使用 Redis 命令与重定向;2)利用 Redis 的 RDB 和 AOF 持久化功能;3)借助第三方工具如 `redis-dump`。每种方法均附有示例代码,帮助你轻松完成数据导出任务。无论数据量大小,总有一款适合你。
171 6