RabbitMQ原理解析

简介: RabbitMQ是使用Erlang语言开发的开源消息队列系统,基于AMQP协议来实现。AMQP的主要特征是面向消息、队列、路由(包括点对点和发布/订阅)、可靠性、 安全。AMQP协议更多用在企业系统内,对数据一致性、稳定性和可靠性要求很高的场景,对性能和吞吐量的要求还在其次。

简介


MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法。应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链接它们。消息传递指的是程序之间通过在消息中发送数据进行通信,而不是通过直接调用彼此来通信,直接调用通常是用于诸如远程过程调用的技术。排队指的是应用程序通过 队列来通信。队列的使用除去了接收和发送应用程序同时执行的要求。

RabbitMQ是使用Erlang语言开发的开源消息队列系统,基于AMQP协议来实现。AMQP的主要特征是面向消息、队列、路由(包括点对点和发布/订阅)、可靠性、 安全。AMQP协议更多用在企业系统内,对数据一致性、稳定性和可靠性要求很高的场景,对性能和吞吐量的要求还在其次。


产生背景


1、消息队列系统最在可以追溯到上个世纪(是不是感觉很久远,其实是1983年,那时候我还没用出生)。1983年最早的消息队列软件Teknekron诞生,当时紧用于一些金融交易等系统。

2、上世纪九十年代,诞生了多家消息队列系统,例如IBM MQ、微软的MSMQ、TIBCO MQ等消息队列在企业中的应用也愈加广泛。显然这些商用的消息队列系统如果企业要使用需要付出高昂的成本,并且各个消息队列之间使用不同的API不同的协议。

3、2004年,AMQP(Advanced Message Queuing Protocol,高级消息队列协议)开始开发。通过这一标准可以和任意AMQP供应商提供的MQ服务进行交互。

4、2006年,光阴荏苒时光如梭,一转眼就说到了重点。我们的主角使用Erlang语言实现的AMQP开源版本,RabbitMQ诞生了,同年AMQP协议首次发布。


优缺点


优点

  • 应用异步

考虑定外卖支付成功的情况

支付后要发送支付成功的通知,再寻找外卖小哥来进行配送,而寻找外卖小哥的过程非常耗时,尤其是高峰期,可能要等待几十秒甚至更长

这样就造成整条调用链路响应非常缓慢

网络异常,图片无法展示
|

而如果我们引入RabbitMQ消息队列,订单数据可以发送到消息队列服务器,那么调用链路也就可以到此结束,订单系统则可以立即得到响应,整条链路的响应时间只有200毫秒左右

寻找外卖小哥的应用可以以异步的方式从消息队列接收订单消息,再执行耗时的寻找操作

网络异常,图片无法展示
|

  • 应用解耦

假设有这样一个场景, 服务A产生数据, 而服务B,C,D需要这些数据, 那么我们可以在A服务中直接调用B,C,D服务,把数据传递到下游服务即可

但是,随着我们的应用规模不断扩大,会有更多的服务需要A的数据,如果有几十甚至几百个下游服务,而且会不断变更,再加上还要考虑下游服务出错的情况,那么A服务中调用代码的维护会极为困难

这是由于服务之间耦合度过于紧密

网络异常,图片无法展示
|

再来考虑用RabbitMQ解耦的情况

A服务只需要向消息服务器发送消息,而不用考虑谁需要这些数据;下游服务如果需要数据,自行从消息服务器订阅消息,不再需要数据时则取消订阅即可

网络异常,图片无法展示
|

  • 流量削峰

假设我们有一个应用,平时访问量是每秒300请求,我们用一台服务器即可轻松应对

网络异常,图片无法展示
|

而在高峰期,访问量瞬间翻了十倍,达到每秒3000次请求,那么单台服务器肯定无法应对,这时我们可以考虑增加到10台服务器,来分散访问压力

但如果这种瞬时高峰的情况每天只出现一次,每次只有半小时,那么我们10台服务器在多数时间都只分担每秒几十次请求,这样就有点浪费资源了

网络异常,图片无法展示
|

这种情况,我们就可以使用RabbitMQ来进行流量削峰,高峰情况下,瞬间出现的大量请求数据,先发送到消息队列服务器,排队等待被处理,而我们的应用,可以慢慢的从消息队列接收请求数据进行处理,这样把数据处理时间拉长,以减轻瞬时压力

这是消息队列服务器非常典型的应用场景

网络异常,图片无法展示
|

缺点

  • 系统可用性降低:系统引入外部依赖越多,越容易挂掉。本来 A 系统调用 BCD 系统好好的,加一个 MQ 统一连接 BCD 系统,万一 MQ 挂掉,整套系统就崩溃了。见下图所示

网络异常,图片无法展示
|

  • 系统复杂度提高:在整套系统中硬生生的加入 MQ,对于保证没有消息重复消费的问题、对于保证消息传递顺序性问题、对于处理消息丢失的问题都比较困难
  • 一致性问题:可能存在 A 系统处理完请求直接返回成功,但是在 BCD 三个系统那里,BD 两个系统写库成功了,结果 C 系统写库失败了,造成数据不一致问题。


核心概念


  • Server: 又称Broker, 接受客户端的连接,实现AMQP实体服务
  • Connection: 连接,应用程序与Broker的网络连接
  • Channel: 网络信道,几乎所有的操作都在Channel中进行,Channel是进行消息读写的通道。客户端可建立多个Channel,每个Channel代表一个会话任务
  • Message: 消息,服务器和应用程序之间传送的数据,由Properties和Body组成。Properties可以对消息进行修饰,比如消息的优先级、延迟等高级特性;Body则就是消息体内容
  • Virtual host: 虚拟主机,用于进行逻辑隔离,就有点类似于NameSpace或Group的概念,是最上层的消息路由。一个Virtual Host里面可以有若干个Exchange和Queue,同一个Virtual Host里面不能有相同名称的Exchange或Queue
  • Exchange: 交换机,接收消息,根据路由键转发消息到绑定的队列
  • Binding: Exchange和Queue之间的虚拟连接,binding中可以包含routing key
  • Routing key: 一个路由规则,虚拟机可用它来确定如何路由一个特定消息
  • Queue: 也称为Message Queue,消息队列,保存消息并将它们转发给消费者


工作模式


simple简单模式

网络异常,图片无法展示
|

  • 消息产生消息,将消息放入队列。
  • 消息的消费者(consumer)监听消息队列,如果队列中有消息就消费掉,消息被拿走后自动从队列中删除(隐患:消息可能没有被消费者正确处理,已经从队列中消失了造成消息的丢失,这里可以设置成手动的ack,但如果设置成手动ack,处理完后要及时发送ack消息给队列,否则会造成内存溢出)。

work工作模式(资源的竞争)

网络异常,图片无法展示
|

  • 消息生产者将消息放入队列消费者可以有多个,消费者1、消费者2同时监听同一个队列,消息被消费。
  • C1 C2共同争抢当前的消息队列内容,谁先拿到谁负责消费消息(隐患:高并发情况下,默认会产生某一个消息被多个消费者共同使用,可以设置一个开关(syncronize)保证一条消息只能被一个消费者使用)。

publish/subscribe发布订阅模式(共享资源)

网络异常,图片无法展示
|

  • 每个消费者监听自己的队列。
  • 生产者将消息发给broker,由交换机将消息转发到绑定此交换机的每个队列,每个绑定交换机的队列都将接收到消息。

routing路由模式

网络异常,图片无法展示
|

  • 消息生产者将消息发送给交换机按照路由判断,路由是字符串(info)当前产生的消息携带路由字符(对象的方法),交换机根据路由的key,只能匹配上路由key对应的消息队列,对应的消费者才能消费消息。
  • 根据业务功能定义路由字符串。
  • 从系统的代码逻辑中获取对应的功能字符串,将消息任务扔到对应的队列中。
  • 业务场景:error 通知、EXCEPTION、错误通知的功能、传统意义的错误通知、客户通知。利用key路由可以将程序中的错误封装成消息传入到消息队列中,开发者可以自定义消费者,实时接收错误。

topic主题模式(路由模式的一种)

网络异常,图片无法展示
|

  • 星号井号代表通配符。
  • 星号代表多个单词,井号代表一个单词。
  • 路由功能添加模糊匹配。
  • 消息产生者产生消息,把消息交给交换机。
  • 交换机根据key的规则模糊匹配到对应的队列,由队列的监听消费者接收消息消费(在我的理解看来就是routing查询的一种模糊匹配,就类似sql的模糊查询方式)。


上千万条消息在MQ中积压怎么解决?


产生背景:

  1. 生产者投递消息的速率与我们消费者消费的速率完全不匹配。
  2. 生产者投递消息的速率 > 消费者消费的速率,导致我们消息会堆积在服务器端中,如果没有及时的被消费者消费,就会产生消息堆积的问题。

注意的是:rabbitmq 消费者消息消费成功的话,消息会被立即删除。

解决方案:

方案一:通常的解决方案就是增加消费端实例。说白了就是增加机器。如果出现线上事故,能申请多少机器就申请多少机器,争取在最短的时间内消费掉积压在MQ中的消息。

方案二:如果申请机器行不通,毕竟公司的机器是有限的,此时可以增加消费端的消费能力。在MQ的配置中配置“最大消费者数量”与“每次从队列中获取的消息数量”。

方案三:如果还是不能解决问题的话,紧急上线专门用于记录消息的队列,先把MQ中的消息记录到数据库中,丢西无关紧要的消息,然后再慢慢的消化处理。

相关实践学习
消息队列RocketMQ版:基础消息收发功能体验
本实验场景介绍消息队列RocketMQ版的基础消息收发功能,涵盖实例创建、Topic、Group资源创建以及消息收发体验等基础功能模块。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
目录
打赏
0
0
0
0
81
分享
相关文章
RocketMQ原理—4.消息读写的性能优化
本文详细解析了RocketMQ消息队列的核心原理与性能优化机制,涵盖Producer消息分发、Broker高并发写入、Consumer拉取消息流程等内容。重点探讨了基于队列的消息分发、Hash有序分发、CommitLog内存写入优化、ConsumeQueue物理存储设计等关键技术点。同时分析了数据丢失场景及解决方案,如同步刷盘与JVM OffHeap缓存分离策略,并总结了写入与读取流程的性能优化方法,为理解和优化分布式消息系统提供了全面指导。
RocketMQ原理—4.消息读写的性能优化
解析:HTTPS通过SSL/TLS证书加密的原理与逻辑
HTTPS通过SSL/TLS证书加密,结合对称与非对称加密及数字证书验证实现安全通信。首先,服务器发送含公钥的数字证书,客户端验证其合法性后生成随机数并用公钥加密发送给服务器,双方据此生成相同的对称密钥。后续通信使用对称加密确保高效性和安全性。同时,数字证书验证服务器身份,防止中间人攻击;哈希算法和数字签名确保数据完整性,防止篡改。整个流程保障了身份认证、数据加密和完整性保护。
RocketMQ原理—5.高可用+高并发+高性能架构
本文主要从高可用架构、高并发架构、高性能架构三个方面来介绍RocketMQ的原理。
258 21
RocketMQ原理—5.高可用+高并发+高性能架构
RocketMQ原理—3.源码设计简单分析下
本文介绍了Producer作为生产者是如何创建出来的、启动时是如何准备好相关资源的、如何从拉取Topic元数据的、如何选择MessageQueue的、与Broker是如何进行网络通信的,Broker收到一条消息后是如何存储的、如何实时更新索引文件的、如何实现同步刷盘以及异步刷盘的、如何清理存储较久的磁盘数据的,Consumer作为消费者是如何创建和启动的、消费者组的多个Consumer会如何分配消息、Consumer会如何从Broker拉取一批消息。
RocketMQ原理—3.源码设计简单分析下
RocketMQ原理—1.RocketMQ整体运行原理
本文详细解析了RocketMQ的整体运行原理,涵盖从生产者到消费者的全流程。首先介绍生产者发送消息的机制,包括Topic与MessageQueue的关系及写入策略;接着分析Broker如何通过CommitLog和ConsumeQueue实现消息持久化,并探讨同步与异步刷盘的优缺点。同时,讲解基于DLedger技术的主从同步原理,确保高可用性。消费者部分则重点讨论消费模式(集群 vs 广播)、拉取消息策略及负载均衡机制。网络通信层面,基于Netty的高性能架构通过多线程池分工协作提升并发能力。最后,揭示mmap与PageCache技术优化文件读写的细节,总结了RocketMQ的核心运行机制。
RocketMQ原理—1.RocketMQ整体运行原理
RocketMQ原理—2.源码设计简单分析上
本文介绍了NameServer的启动脚本、启动时会解析哪些配置、如何初始化Netty网络服务器、如何启动Netty网络服务器,介绍了Broker启动时是如何初始化配置的、BrokerController的创建以及包含的组件、BrokerController的初始化、启动、Broker如何把自己注册到NameServer上、BrokerOuterAPI是如何发送注册请求的,介绍了NameServer如何处理Broker的注册请求、Broker如何发送定时心跳
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
285 7
深入解析图神经网络注意力机制:数学原理与可视化实现
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
Tiktokenizer 是一款现代分词工具,旨在高效、智能地将文本转换为机器可处理的离散单元(token)。它不仅超越了传统的空格分割和正则表达式匹配方法,还结合了上下文感知能力,适应复杂语言结构。Tiktokenizer 的核心特性包括自适应 token 分割、高效编码能力和出色的可扩展性,使其适用于从聊天机器人到大规模文本分析等多种应用场景。通过模块化设计,Tiktokenizer 确保了代码的可重用性和维护性,并在分词精度、处理效率和灵活性方面表现出色。此外,它支持多语言处理、表情符号识别和领域特定文本处理,能够应对各种复杂的文本输入需求。
267 6
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
反向寻车系统怎么做?基本原理与系统组成解析
本文通过反向寻车系统的核心组成部分与技术分析,阐述反向寻车系统的工作原理,适用于适用于商场停车场、医院停车场及火车站停车场等。如需获取智慧停车场反向寻车技术方案前往文章最下方获取,如有项目合作及技术交流欢迎私信作者。
140 2
「ximagine」业余爱好者的非专业显示器测试流程规范,同时也是本账号输出内容的数据来源!如何测试显示器?荒岛整理总结出多种测试方法和注意事项,以及粗浅的原理解析!
本期内容为「ximagine」频道《显示器测试流程》的规范及标准,我们主要使用Calman、DisplayCAL、i1Profiler等软件及CA410、Spyder X、i1Pro 2等设备,是我们目前制作内容数据的重要来源,我们深知所做的仍是比较表面的活儿,和工程师、科研人员相比有着不小的差距,测试并不复杂,但是相当繁琐,收集整理测试无不花费大量时间精力,内容不完善或者有错误的地方,希望大佬指出我们好改进!
233 16
「ximagine」业余爱好者的非专业显示器测试流程规范,同时也是本账号输出内容的数据来源!如何测试显示器?荒岛整理总结出多种测试方法和注意事项,以及粗浅的原理解析!

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等