人工智能技术正在医学领域大显身手

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 人工智能技术的具体应用包括洞察与风险管理、医学研究、医学影像与诊断、生活方式管理与监督、精神健康、护理、急救室与医院管理、药物挖掘、虚拟助理等方面。总体来看,目前人工智能技术在医学领域的应用主要集中于以下五个方面,快来看看吧。

将人工智能(AI)引入医学领域,是当今医疗健康中倾向性较强的前瞻性探索之一。目前人工智能技术正在医学领域大显身手,其应用前景十分广阔;正如国际知名学者周海中教授曾经指出的那样:“随着社会的发展和科技的进步,人工智能技术将在医疗健康领域大显身手;其成果会不断涌现,应用前景令人期待。”与大数据和物联网一样,人工智能技术将成为未来医学发展的核心要素之一。

31b967950dfa73af2ed855317108e372740fcd.jpg

人工智能技术在医学领域的应用,意味着全世界的人都能得到更为普惠的医疗救助,获得更好的诊断、更安全的微创手术、更短的等待时间和更低的感染率,并且还能提高每个人的长期存活率。人工智能技术的具体应用包括洞察与风险管理、医学研究、医学影像与诊断、生活方式管理与监督、精神健康、护理、急救室与医院管理、药物挖掘、虚拟助理等方面。总体来看,目前人工智能技术在医学领域的应用主要集中于以下五个方面:

1.智能诊疗
智能诊疗就是将人工智能技术应用于疾病诊疗中,让机器“学习”专家级医师的医疗经验和医学文献知识,模拟诊疗时的思维逻辑,并在实际应用时给出方案。计算机可以帮助医生进行病理,体检报告等的统计,通过大数据和深度挖掘等技术,对病人的医疗数据进行分析和挖掘,自动识别病人的临床变量和指标。计算机通过“学习”相关的专业知识,模拟医生的思维和诊断推理,从而给出可靠诊断和治疗方案。智能诊疗是人工智能总体来看,在医学领域最重要、也最核心的应用场景。随着它在实际场景中落地,人工智能技术将成为医生的辅助,让医生更加轻松高效地治病救人。另外,医生可以利用人工智能技术模拟医患沟通,智能采集患者病情生成病历报告。在某些特定的诊断领域,人工智能的未来有着巨大的发展潜力。例如科学家最新设计的一种新型人工智能通过筛选大脑成像数据来发现与自闭症、精神分裂症和阿尔茨海默症相关的模式,该模式可以检测到精神疾病的征兆信号。

2.影像识别
传统医疗场景中,培养出优秀的医学影像专业医生,所用时间长,投入成本大。另外,人工读片时主观性太大,信息和数字利用不足,在判断过程中容易出现差错。有研究统计,医疗数据中有超过
90%的数据来自于医学影像,但是影像诊断过于依赖人的主观意识,容易发生误判。人工智能在医学影像应用主要分为两部分:一是图像识别,应用于感知环节,其主要目的是将影像进行分析,获取一些有意义的信息;二是深度学习,应用于学习和分析环节,通过大量的影像数据和诊断数据,不断对神经元网络进行深度学习训练,促使其掌握诊断能力。人工智能通过大量学习医学影像,可以帮助医生进行病灶区域定位,减少漏诊、误诊,提升诊断的准确率和效率。大数据与人工智能将被用于精准识别医学影像中的早期病灶,定位致病基因并开展相应的靶向治疗,以及提前预警重大健康风险等。

3.医疗器械
医疗器械方面主要有医用智能机器人;这种器械的应用非常广泛,比如智能假肢、外骨骼和辅助设备等技术修复人类受损身体,医疗保健机器人辅助医护人员的工作等。目前实践中的医用智能机器人主要有两种:一是能够读取人体神经信号的医用智能机器人,也成为“智能外骨骼”;二是能够承担手术或医疗保健功能的医用智能机器人,以IBM开发的达芬奇手术机器人为典型代表。近年来,医用智能机器人发展十分迅速,进入了市场应用。医用智能机器人未来发展趋势主要有四点:一是精确医学理念进一步发展,二是医工研用全要素协同创新成为必然,三是金融资本在医用智能机器人产业中起着越来越大的作用,四是专用型的医疗机器人将成为产品发展趋势;这种趋势将与日俱增。

4.药物研发
依托数百万患者的大数据信息,人工智能系统可以快速、准确的挖掘和筛选出适合的药物。通过计算机模拟,人工智能技术可以对药物活性、安全性和副作用进行预测,找出与疾病匹配的最佳药物。这一技术将会缩短药物研发周期、降低新药成本并且提高新药的研发成功率,更好造福患者。人工智能技术不仅能够挖掘出不易被发现的隐性关系,构建药物、疾病和基因之间的深层次关系;也可以对候选化合物进行虚拟筛选,更快地筛选出具有较高活性的化合物,为后期临床试验做准备。借助深度学习,人工智能技术已在心血管药、抗肿瘤药和常见传染病治疗药等多领域取得了新突破。尤其是在抗击新冠肺炎(COVID-19)中,人工智能技术在疫苗研发方面发挥了十分重要的作用。

5.健康管理
根据人工智能技术而建造的智能设备可以监测到人们的一些基本身体特征,如饮食、睡眠、身体健康指数等。对身体素质进行简单的评估,提供个性的健康管理方案,及时识别疾病发生的风险,提醒用户注意自己的身体健康安全。目前人工智能技术在健康管理方面的应用主要在风险识别、虚拟护士、精神健康、在线问诊、健康干预以及基于精准医学的健康管理。尤其在血糖管理、血压管理、用药提醒、健康要素监测等方面,人工智能技术可以提供常态化、精细化的指导,为特定群体提供全方位、全周期的健康服务。这些,不仅有利于加强疾病预防、提高慢病管理效率,也能提升公众的健康观念,从根本上节省全社会的医疗成本。

由以上五个方面的论述可以看出,人工智能技术正在医学领域大显身手;这将使人们的医疗健康更加高效、便捷和个性化,而它的推动者主要是在医疗健康行业深耕细作多年的科技人员。可以肯定的是,人工智能技术的蓬勃发展,推动了医学的进步和发展,为精准医学和公共健康开拓了广阔空间,增强了人类战胜各种疾病的信心和勇气。


本文转载自51CTO,本文一切观点和机器智能技术圈子无关。原文链接
免费体验百种AI能力以及试用热门离线SDK:【点此跳转】

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
6天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
38 3
|
16天前
|
人工智能 搜索推荐 安全
AI技术在医疗领域的应用与挑战
【10月更文挑战第27天】 本文探讨了人工智能(AI)在医疗领域的应用,包括疾病诊断、药物研发和患者管理等方面。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题和技术局限性等。通过对这些方面的深入分析,我们可以更好地理解AI在医疗领域的潜力和发展方向。
119 59
|
5天前
|
人工智能 文字识别 运维
AI多模态的5大核心关键技术,让高端制造实现智能化管理
结合大模型应用场景,通过AI技术解析高端制造业的复杂设备与文档数据,自动化地将大型零件、机械图纸、操作手册等文档结构化。核心技术包括版面识别、表格抽取、要素抽取和文档抽取,实现信息的系统化管理和高效查询,大幅提升设备维护和生产管理的效率。
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与深度学习:探索未来技术的无限可能
在21世纪,人工智能(AI)和深度学习已经成为推动科技进步的重要力量。本文将深入探讨这两种技术的基本概念、发展历程以及它们如何共同塑造未来的科技景观。我们将分析人工智能的最新趋势,包括自然语言处理、计算机视觉和强化学习,并讨论这些技术在现实世界中的应用。此外,我们还将探讨深度学习的工作原理,包括神经网络、卷积神经网络(CNN)和循环神经网络(RNN),并分析这些模型如何帮助解决复杂的问题。通过本文,读者将对人工智能和深度学习有更深入的了解,并能够预见这些技术将如何继续影响我们的世界。
36 7
|
7天前
|
人工智能 自然语言处理 自动驾驶
技术与人性:探索人工智能伦理的边界####
本文深入探讨了人工智能技术飞速发展背景下,伴随而来的伦理挑战与社会责任。不同于传统摘要直接概述内容,本文摘要旨在引发读者对AI伦理问题的关注,通过提出而非解答的方式,激发对文章主题的兴趣。在智能机器逐渐融入人类生活的每一个角落时,我们如何确保技术的善意使用,保护个人隐私,避免偏见与歧视,成为亟待解决的关键议题。 ####
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
66 11
|
10天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
55 4
|
9天前
|
机器学习/深度学习 人工智能 算法
基于AI的性能优化技术研究
基于AI的性能优化技术研究
|
14天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗健康领域的应用与挑战####
本文旨在探讨人工智能(AI)技术在医疗健康领域的创新应用及其面临的主要挑战。通过深入分析AI如何助力疾病诊断、治疗方案优化、患者管理及药物研发,本文揭示了AI技术在提升医疗服务质量、效率和可及性方面的巨大潜力。同时,文章也指出了数据隐私、伦理道德、技术局限性等关键问题,并提出了相应的解决策略和未来发展方向。本文为医疗从业者、研究者及政策制定者提供了对AI医疗技术的全面理解,促进了跨学科合作与创新。 ####
|
12天前
|
人工智能 算法
AI技术在医疗领域的应用及其挑战
【10月更文挑战第31天】本文将探讨AI技术在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念开始,然后详细介绍其在医疗领域的应用,包括疾病诊断、药物研发、患者护理等方面。最后,我们将讨论AI技术在医疗领域面临的挑战,如数据隐私、算法偏见等问题。