如何利用小数据集改进深度学习模型?

简介: 本文将讨论在不用更多数据的情况下改进深度学习模型的三种方法。

众所周知,深度学习模型对数据的需求量很大。为深度学习模型提供的数据越多,它们的表现就越好。遗憾的是,在大多数实际情形下,这是不可能的。您可能没有足够的数据,或者数据过于昂贵而无法收集。本文将讨论在不用更多数据的情况下改进深度学习模型的三种方法。

a92ad1a038e426ab262802c328e20c1d1e0147.jpg

为什么深度学习需要这么多数据?
深度学习模型之所以引人注目,是由于它们可以学习了解复杂的关系。深度学习模型包含多个层。每一层都学习了解复杂性逐步递增的数据表示。第一层可能学习检测简单的模式,比如边缘。第二层可能学习查看这些边缘的模式,比如形状。第三层可能学习识别由这些形状组成的对象,依此类推。

每层由一系列神经元组成,它们又连接到前一层中的每个神经元。所有这些层和神经元意味着有大量参数需要优化。所以好的方面是深度学习模型拥有强大的功能。但不好的方面意味着它们容易过拟合。过拟合是指模型在训练数据中捕捉到过多的干扰信号,无法适用于新数据。

有了足够的数据,深度学习模型可以学习检测非常复杂的关系。不过,如果您没有足够的数据,深度学习模型将无法理解这些复杂的关系。我们必须有足够的数据,那样深度学习模型才能学习。但是如果不太可能收集更多的数据,我们有几种技术可以克服:

1、迁移学习有助于用小数据集训练深度学习模型。
迁移学习是一种机器学习技术,您可以拿来针对一个问题训练的模型,将其用作解决相关的不同问题的起点。

比如说,您可以拿来针对庞大狗图像数据集训练的模型,并将其用作训练模型以识别狗品种的起点。

但愿第一个模型学到的特征可以被重用,从而节省时间和资源。至于两种应用有多大不同,没有相应的经验法则。但是,即使原始数据集和新数据集大不相同,照样可以使用迁移学习。

比如说,您可以拿来针对猫图像训练的模型,并将其用作训练模型以识别骆驼类型的起点。但愿在第一个模型中找出四条腿的功能可能有助于识别骆驼。

2、尝试数据增强
数据增强是一种技术,您可以拿现有数据生成新的合成数据。

比如说,如果您有一个狗图像数据集,可以使用数据增强来生成新的狗图片。您可以通过随机裁剪图像、水平翻转、添加噪点及其他几种技术做到这一点。

如果您有一个小数据集,数据增强大有益处。通过生成新数据,可以人为地增加数据集的大小,为您的深度学习模型提供更多可使用的数据。

3、使用自动编码器
自动编码器是一种用于学习低维度数据表示的深度学习模型。

当您有一个小数据集时,自动编码器很有用,因为它们可以学习将您的数据压缩到低维度空间中。

有许多不同类型的自动编码器。变分自动编码器(VAE)是一种流行的自动编码器。VAE是一种生成式模型,这意味着它们可以生成新数据。这大有帮助,因为您可以使用VAE生成类似于训练数据的新数据点。这是增加数据集大小而无需实际收集更多数据的好方法。


本文转载自51CTO,本文一切观点和机器智能技术圈子无关。原文链接
免费体验百种AI能力以及试用热门离线SDK:【点此跳转】

相关文章
|
9天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品加工优化的深度学习模型
使用Python实现智能食品加工优化的深度学习模型
104 59
|
5天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品市场预测的深度学习模型
使用Python实现智能食品市场预测的深度学习模型
30 5
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的Transformer模型
探索深度学习中的Transformer模型
12 1
|
7天前
|
机器学习/深度学习 算法 开发者
探索深度学习中的优化器选择对模型性能的影响
在深度学习领域,优化器的选择对于模型训练的效果具有决定性作用。本文通过对比分析不同优化器的工作原理及其在实际应用中的表现,探讨了如何根据具体任务选择合适的优化器以提高模型性能。文章首先概述了几种常见的优化算法,包括梯度下降法、随机梯度下降法(SGD)、动量法、AdaGrad、RMSProp和Adam等;然后,通过实验验证了这些优化器在不同数据集上训练神经网络时的效率与准确性差异;最后,提出了一些基于经验的规则帮助开发者更好地做出选择。
|
6天前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
22 2
|
5天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
21 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
5天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
25 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
11天前
|
机器学习/深度学习 数据采集 数据库
使用Python实现智能食品营养分析的深度学习模型
使用Python实现智能食品营养分析的深度学习模型
38 6
|
8天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品储存管理的深度学习模型
使用Python实现智能食品储存管理的深度学习模型
23 2
|
9天前
|
机器学习/深度学习 算法
深度学习中的模型优化策略
【10月更文挑战第35天】在深度学习的海洋中,模型优化是那把能够引领我们抵达知识彼岸的桨。本文将从梯度下降法出发,逐步深入到动量、自适应学习率等高级技巧,最后通过一个实际代码案例,展示如何应用这些策略以提升模型性能。