经典案例:磁盘I/O巨高排查全过程(1)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 经典案例:磁盘I/O巨高排查全过程

前言

是什么原因导致线上数据库服务器磁盘I/O的util和iowait持续飚高?

1. 问题描述

朋友小明的线上数据库突发严重告警,业务方反馈写入数据一直堵住,很多锁超时回滚了,不知道怎么回事,就找到我了。

不管3721,先采集现场的必要信息再说。

a. 系统负载,主要是磁盘I/O的负载数据

image.png

该服务器的磁盘是由6块2T SSD硬盘组成的RAID-5阵列。从上面的截图来看,I/O %util已经基本跑满了,iowait也非常高,很明显磁盘I/O压力太大了。那就再查查什么原因导致的这么高压力。

b. 活跃事务列表

image.png

可以看到,有几个活跃的事务代价很高,锁定了很多行。其中有两个因为太久超时被回滚了。

image.png

再看一次活跃事务列表,发现有个事务锁定的行更多了,说明活跃业务SQL的效率不太好,需要进行优化。这个算是原因之一,先记下。

c. 查看InnoDB状态

执行 SHOW ENGINE INNODB STATUS\G 查看InnoDB状态,这里只展示了几个比较关键的地方:

...
0x7f8f700e9700 INNODB MONITOR OUTPUT
...
LATEST DETECTED DEADLOCK
------------------------
...
*** (2) TRANSACTION:
TRANSACTION 52970892097, ACTIVE 1 sec starting index read
mysql tables in use 2, locked 2
80249 lock struct(s), heap size 9691344, 351414 row lock(s),
 undo log entries 30005

### 这里很明显,发生死锁的事务之一持有很多行锁,需要优化SQL
...
update a inner join b on a.uid=b.uid set a.kid=if(b.okid=0,b.kid,b.okid),a.aid=b.aid where
 a.date='2020-02-10'
...
TRANSACTIONS
------------
Trx id counter 52971738624
Purge done for trx's n:o < 52971738461 undo n:o < 0
 state: running but idle
History list length 81
...
---TRANSACTION 52971738602, ACTIVE 0 sec inserting
mysql tables in use 1, locked 1
1 lock struct(s), heap size 1136, 0 row lock(s),
 undo log entries 348

### 同样滴,也是有很多行锁
...
LOG
---
Log sequence number 565123876918590
Log flushed up to   565123858946703
Pages flushed up to 565121518602442
Last checkpoint at  565121518602442
...
### 注意到Last checkpoint和LSN之间的差距非常大,约为2249MB
### 说明redo log的checkpoint有延迟比较厉害,有可能是因为磁盘I/O太慢,
### 也有可能是因为产生的脏页太多太快,来不及刷新
----------------------
BUFFER POOL AND MEMORY
----------------------
Total large memory allocated 201200762880
Dictionary memory allocated 130361859
Internal hash tables (constant factor + variable factor)
    Adaptive hash index 3930999872      (3059599552 + 871400320)
    Page hash           23903912 (buffer pool 0 only)
    Dictionary cache    895261747       (764899888 + 130361859)
    File system         16261960        (812272 + 15449688)
    Lock system         478143288       (478120568 + 22720)
    Recovery system     0       (0 + 0)
Buffer pool size   11795040
Buffer pool size, bytes 193249935360
Free buffers       7035886
Database pages     4705977
Old database pages 1737005
Modified db pages  238613

### 脏页比例约为2%,看着还好嘛,而且还有挺多free page的
...

d. 查看MySQL的线程状态*

+---------+------+--------------+---------------------

| Command | Time | State | Info |
+---------+------+--------------+---------------------
| Query | 1 | update | insert xxx
| Query | 0 | updating | update xxx
| Query | 0 | updating | update xxx
| Query | 0 | updating | update xxx
| Query | 0 | updating | update xxx
+---------+------+--------------+---------------------



可以看到几个事务都处于updating状态。意思是正在扫描数据并准备更新,肉眼可见这些事务状态时,一般是因为系统负载比较高,所以事务执行起来慢;或者该事务正等待行锁释放。

2. 问题分析及优化工作

分析上面的各种现场信息,我们可以得到以下几点结论:

a. 磁盘I/O压力很大。先把阵列卡的cache策略改成WB,不过由于已经是SSD盘,这个作用并不大,只能申请更换成RAID-10阵列的新机器了,还需等待资源调配。

b. 需要优化活跃SQL,降低加锁代价

[root@yejr.me]> desc  select * from a inner join b on
a.uid=b.uid where a.date='2020-02-10';
+-------+--------+------+---------+----------+-------+----------+-----------------------+
| table | type | key | key_len | ref | rows | filtered | Extra |
+-------+--------+------+---------+----------+-------+----------+-----------------------+
| a | ref | date | 3 | const | 95890 | 100.00 | NULL |
| b | eq_ref | uid | 4 | db.a.uid | 1 | 100.00 | Using index condition |
+-------+--------+------+---------+----------+-------+----------+-----------------------+

[root@yejr.me]> select count(*) from a inner join b on
a.uid=b.uid where a.date='2020-02-10';
+----------+
| count(*) |
+----------+
| 40435 |
+----------+
1 row in set (0.22 sec)

执行计划看起来虽然能用到索引,但效率还是不高。检查了下,发现a表的uid列竟然没加索引,我汗。。。

c. InnoDB的redo log checkpoint延迟比较大,有2249MB之巨。先检查redo log的设置:

innodb_log_file_size = 2G
innodb_log_files_in_group = 2

这个问题就大了,redo log明显太小,等待被checkpoint的redo都超过2G了,那肯定要疯狂刷脏页,所以磁盘I/O的写入才那么高,I/O %util和iowait也很高。

建议把redo log size调整成4G、3组。

innodb_log_file_size = 4G
innodb_log_files_in_group = 2

此外,也顺便检查了InnoDB其他几个重要选项

innodb_thread_concurrency = 0
# 建议维持设置0不变

innodb_max_dirty_pages_pct = 50
# 由于这个实例每秒写入量较大,建议先调整到75,降低刷脏页的频率,
# 顺便缓解redo log checkpoint的压力。
# 在本案例,最后我们把这个值调整到了90。

特别提醒

从MySQL 5.6版本起,修改redo log设置后,实例重启时会自动完成redo log的再次初始化,不过前提是要先干净关闭实例。因此建议在第一次关闭时,修改以下两个选项:

innodb_max_dirty_pages_pct = 0
innodb_fast_shutdown = 0

并且,再加上一个新选项,防止实例启动后,会有外部应用连接进来继续写数据:

skip-networking

在确保所有脏页(上面看到的Modified db pages为0)都刷盘完毕后,并且redo log也都checkpoint完毕(上面看到的Log sequence numberLast checkpoint at**值相等),此时才能放心的修改 innodb_log_file_size 选项配置并重启。确认生效后再关闭 skip-networking 选项对业务提供服务。

            </div>
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
8天前
|
机器人 API 调度
基于 DMS Dify+Notebook+Airflow 实现 Agent 的一站式开发
本文提出“DMS Dify + Notebook + Airflow”三位一体架构,解决 Dify 在代码执行与定时调度上的局限。通过 Notebook 扩展 Python 环境,Airflow实现任务调度,构建可扩展、可运维的企业级智能 Agent 系统,提升大模型应用的工程化能力。
|
人工智能 前端开发 API
前端接入通义千问(Qwen)API:5 分钟实现你的 AI 问答助手
本文介绍如何在5分钟内通过前端接入通义千问(Qwen)API,快速打造一个AI问答助手。涵盖API配置、界面设计、流式响应、历史管理、错误重试等核心功能,并提供安全与性能优化建议,助你轻松集成智能对话能力到前端应用中。
657 154
|
14天前
|
人工智能 数据可视化 Java
Spring AI Alibaba、Dify、LangGraph 与 LangChain 综合对比分析报告
本报告对比Spring AI Alibaba、Dify、LangGraph与LangChain四大AI开发框架,涵盖架构、性能、生态及适用场景。数据截至2025年10月,基于公开资料分析,实际发展可能随技术演进调整。
925 152
|
负载均衡 Java 微服务
OpenFeign:让微服务调用像本地方法一样简单
OpenFeign是Spring Cloud中声明式微服务调用组件,通过接口注解简化远程调用,支持负载均衡、服务发现、熔断降级、自定义拦截器与编解码,提升微服务间通信开发效率与系统稳定性。
352 156
|
6天前
|
分布式计算 监控 API
DMS Airflow:企业级数据工作流编排平台的专业实践
DMS Airflow 是基于 Apache Airflow 构建的企业级数据工作流编排平台,通过深度集成阿里云 DMS(Data Management Service)系统的各项能力,为数据团队提供了强大的工作流调度、监控和管理能力。本文将从 Airflow 的高级编排能力、DMS 集成的特殊能力,以及 DMS Airflow 的使用示例三个方面,全面介绍 DMS Airflow 的技术架构与实践应用。
|
7天前
|
人工智能 自然语言处理 前端开发
Qoder全栈开发实战指南:开启AI驱动的下一代编程范式
Qoder是阿里巴巴于2025年发布的AI编程平台,首创“智能代理式编程”,支持自然语言驱动的全栈开发。通过仓库级理解、多智能体协同与云端沙箱执行,实现从需求到上线的端到端自动化,大幅提升研发效率,重塑程序员角色,引领AI原生开发新范式。
427 2