MySQL 8.0 InnoDB压缩行格式性能测试(1)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: MySQL 8.0 InnoDB压缩行格式性能测试

1. 背景信息

1. 测试环境

2. 进行测试

2.1 所有数据可以加载到buffer pool中

2.1.1 数据压缩率

2.1.2 TPS相差值

2.1.3 平均延迟差值 avg Latency (ms)

2.1.4 99%延迟差值 99th percentile Latency (ms)

2.2 数据量超过内存ibp容量

2.2.1 数据压缩率

2.2.2 TPS相差值

2.2.3 平均延迟差值 avg Latency (ms)

2.2.4 99%延迟差值 99th percentile Latency (ms)

3. 总结延伸阅读

1. 背景信息

多年前我对InnoDB表压缩格式做了个简单的测试,得到的结论大概是:

按照这个结论,压缩行格式不建议用在TPS较高的OLTP场景,如果有类似的业务需要,可以考虑用TokuDB或RocksDB引擎。

尝试过用TokuDB当做Zabbix的后端数据库,效果还不错,详情见 迁移Zabbix数据库到TokuDB

不过,TokuDB现在已经基本被Percona抛弃了,还有这类业务需求时,可以考虑改用RocksDB引擎,可以参考这篇文章 MyRocks引擎:入坑须知

随着MySQL 8.0.20的发布,我又重燃了对compressed行格式的兴趣,今日就此再做了个简单测试。

1. 测试环境

本次测试的服务器配置是腾讯云"标准型S5"型CVM主机,具体配置是:

配置项 参数
CPU 4 Core(Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50GHz)
内存 16GB
数据盘 500GB SSD云硬盘(理论最大随机IOPS值 16800,实际上最高也只能跑到10000不到)



my.cnf中InnoDB相关配置参数(其余采用默认设置)

innodb_flush_log_at_trx_commit=1
innodb_buffer_pool_size=8G
innodb_log_file_size = 2G



MySQL选用最新的8.0.20版本:

Server version:        8.0.20 MySQL Community Server - GPL

2. 进行测试

本次测试计划分为两种模式

a) 所有数据可以加载到buffer pool中

b) 数据量超过内存ibp容量

针对上述两种模式再分别对dynamic、compressed行格式的区别。

2.1 所有数据可以加载到buffer pool中

相应的sysbench参数如下:

TBLCNT=50 #共50个表

DURING=900 #一次压测900秒(5分钟)
ROWS=100000 #每个表10万行数据
MAXREQ=5000000 #每个线程执行500万次请求

2.1.1 数据压缩率

未压缩格式(KB) 压缩格式(KB) 压缩率(1-压缩格式/未压缩格式)
1638456 1218588 25.63%

2.1.2 TPS相差值


image.png


数值说明:这表示 未压缩格式 相对于 压缩格式的提升比例,例如上图中第一列的 71.11%,表示 在OLTP模式下,并发256线程压测时,未压缩行格式的TPS相对于压缩行格式增加71.11%,下同。

2.1.3 平均延迟差值 avg Latency (ms)


image.png


2.1.4 99%延迟差值 99th percentile Latency (ms)


image.png


根据测试结果的几点结论:

a) 当数据都能放在buffer pool中的时候,是否采用压缩格式对于读的业务场景影响很小。

b) 当数据都能放在buffer pool中的时候,混合OLTP业务场景或者以更新为主的业务场景中,Dynamic行格式明显要比Compressed行格式的性能更好。

综上,当数据量比较小的时候,并且读多写少的业务场景中,可以考虑使用Compressed行格式。而如果是写多读少的业务场景,则最好使用Dynamic行格式。


            </div>
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
8天前
|
机器人 API 调度
基于 DMS Dify+Notebook+Airflow 实现 Agent 的一站式开发
本文提出“DMS Dify + Notebook + Airflow”三位一体架构,解决 Dify 在代码执行与定时调度上的局限。通过 Notebook 扩展 Python 环境,Airflow实现任务调度,构建可扩展、可运维的企业级智能 Agent 系统,提升大模型应用的工程化能力。
|
14天前
|
人工智能 数据可视化 Java
Spring AI Alibaba、Dify、LangGraph 与 LangChain 综合对比分析报告
本报告对比Spring AI Alibaba、Dify、LangGraph与LangChain四大AI开发框架,涵盖架构、性能、生态及适用场景。数据截至2025年10月,基于公开资料分析,实际发展可能随技术演进调整。
913 152
|
人工智能 前端开发 API
前端接入通义千问(Qwen)API:5 分钟实现你的 AI 问答助手
本文介绍如何在5分钟内通过前端接入通义千问(Qwen)API,快速打造一个AI问答助手。涵盖API配置、界面设计、流式响应、历史管理、错误重试等核心功能,并提供安全与性能优化建议,助你轻松集成智能对话能力到前端应用中。
651 154
|
负载均衡 Java 微服务
OpenFeign:让微服务调用像本地方法一样简单
OpenFeign是Spring Cloud中声明式微服务调用组件,通过接口注解简化远程调用,支持负载均衡、服务发现、熔断降级、自定义拦截器与编解码,提升微服务间通信开发效率与系统稳定性。
348 156
|
6天前
|
分布式计算 监控 API
DMS Airflow:企业级数据工作流编排平台的专业实践
DMS Airflow 是基于 Apache Airflow 构建的企业级数据工作流编排平台,通过深度集成阿里云 DMS(Data Management Service)系统的各项能力,为数据团队提供了强大的工作流调度、监控和管理能力。本文将从 Airflow 的高级编排能力、DMS 集成的特殊能力,以及 DMS Airflow 的使用示例三个方面,全面介绍 DMS Airflow 的技术架构与实践应用。
|
4天前
|
存储 Kubernetes Docker
部署eck收集日志到k8s
本文介绍基于ECK(Elastic Cloud on Kubernetes)在K8s中部署Elasticsearch、Kibana和Filebeat的完整流程。采用Helm方式部署ECK Operator,通过自定义YAML文件分别部署ES集群、Kibana及Filebeat,并实现日志采集与可视化。重点涵盖命名空间一致性、版本匹配、HTTPS配置禁用、资源限制、存储挂载及权限RBAC设置,支持系统日志、应用日志与容器日志的多源采集,适用于生产环境日志系统搭建。
243 94