优化系列 | 实例解析MySQL性能瓶颈排查定位

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 优化系列 | 实例解析MySQL性能瓶颈排查定位

导读

从一个现场说起,全程解析如何定位性能瓶颈。

排查过程

收到线上某业务后端的MySQL实例负载比较高的告警信息,于是登入服务器检查确认。

1. 首先我们进行OS层面的检查确认

登入服务器后,我们的目的是首先要确认当前到底是哪些进程引起的负载高,以及这些进程卡在什么地方,瓶颈是什么。

通常来说,服务器上最容易成为瓶颈的是磁盘I/O子系统,因为它的读写速度通常是最慢的。即便是现在的PCIe SSD,其随机I/O读写速度也是不如内存来得快。当然了,引起磁盘I/O慢得原因也有多种,需要确认哪种引起的。

第一步,我们一般先看整体负载如何,负载高的话,肯定所有的进程跑起来都慢。

可以执行指令 w 或者 sar -q 1 来查看负载数据,例如(横版查看):

[yejr@imysql.com:~ ]# w
 11:52:58 up 702 days, 56 min,  1 user,  load average: 7.20, 6.70, 6.47
USER     TTY      FROM              LOGIN@   IDLE   JCPU   PCPU WHAT
root     pts/0    1.xx.xx.xx        11:51    0.00s  0.03s  0.00s w

或者 sar -q 的观察结果(横版查看):

[yejr@imysql.com:~ ]# sar -q 1

Linux 2.6.32-431.el6.x86_64 (yejr.imysql.com) 01/13/2016 x86_64 (24 CPU)
02:51:18 PM runq-sz plist-sz ldavg-1 ldavg-5 ldavg-15 blocked
02:51:19 PM 4 2305 6.41 6.98 7.12 3
02:51:20 PM 2 2301 6.41 6.98 7.12 4
02:51:21 PM 0 2300 6.41 6.98 7.12 5
02:51:22 PM 6 2301 6.41 6.98 7.12 8
02:51:23 PM 2 2290 6.41 6.98 7.12 8

load average大意表示当前CPU中有多少任务在排队等待,等待越多说明负载越高,跑数据库的服务器上,一般load值超过5的话,已经算是比较高的了。

引起load高的原因也可能有多种:

  1. 某些进程/服务消耗更多CPU资源(服务响应更多请求或存在某些应用瓶颈);
  2. 发生比较严重的swap(可用物理内存不足);
  3. 发生比较严重的中断(因为SSD或网络的原因发生中断);
  4. 磁盘I/O比较慢(会导致CPU一直等待磁盘I/O请求);

这时我们可以执行下面的命令来判断到底瓶颈在哪个子系统(横版查看):

[yejr@imysql.com:~ ]# top
top - 11:53:04 up 702 days, 56 min, 1 user, load average: 7.18, 6.70, 6.47
Tasks: 576 total, 1 running, 575 sleeping, 0 stopped, 0 zombie
Cpu(s): 7.7%us, 3.4%sy, 0.0%ni, 77.6%id, 11.0%wa, 0.0%hi, 0.3%si, 0.0%st
Mem: 49374024k total, 32018844k used, 17355180k free, 115416k buffers
Swap: 16777208k total, 117612k used, 16659596k free, 5689020k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
14165 mysql 20 0 8822m 3.1g 4672 S 162.3 6.6 89839:59 mysqld
40610 mysql 20 0 25.6g 14g 8336 S 121.7 31.5 282809:08 mysqld
49023 mysql 20 0 16.9g 5.1g 4772 S 4.6 10.8 34940:09 mysqld

很明显是前面两个mysqld进程导致整体负载较高。

而且,从 Cpu(s) 这行的统计结果也能看的出来,%us%wa 的值较高,表示当前比较大的瓶颈可能是在用户进程消耗的CPU以及磁盘I/O等待上

我们先分析下磁盘I/O的情况。

执行 sar -d 确认磁盘I/O是否真的较大(横版查看):

[yejr@imysql.com:~ ]# sar -d 1
Linux 2.6.32-431.el6.x86_64 (yejr.imysql.com) 01/13/2016 x86_64 (24 CPU)
11:54:32 AM dev8-0 5338.00 162784.00 1394.00 30.76 5.24 0.98 0.19 100.00
11:54:33 AM dev8-0 5134.00 148032.00 32365.00 35.14 6.93 1.34 0.19 100.10
11:54:34 AM dev8-0 5233.00 161376.00 996.00 31.03 9.77 1.88 0.19 100.00
11:54:35 AM dev8-0 4566.00 139232.00 1166.00 30.75 5.37 1.18 0.22 100.00
11:54:36 AM dev8-0 4665.00 145920.00 630.00 31.41 5.94 1.27 0.21 100.00
11:54:37 AM dev8-0 4994.00 156544.00 546.00 31.46 7.07 1.42 0.20 100.00

再利用 iotop 确认到底哪些进程消耗的磁盘I/O资源最多(横版查看):

[yejr@imysql.com:~ ]# iotop
Total DISK READ: 60.38 M/s | Total DISK WRITE: 640.34 K/s
TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND
16397 be/4 mysql 8.92 M/s 0.00 B/s 0.00 % 94.77 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320
7295 be/4 mysql 10.98 M/s 0.00 B/s 0.00 % 93.59 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320
14295 be/4 mysql 10.50 M/s 0.00 B/s 0.00 % 93.57 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320
14288 be/4 mysql 14.30 M/s 0.00 B/s 0.00 % 91.86 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320
14292 be/4 mysql 14.37 M/s 0.00 B/s 0.00 % 91.23 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320

可以看到,端口号是3320的实例消耗的磁盘I/O资源比较多,那就看看这个实例里都有什么查询在跑吧。

2. MySQL层面检查确认

首先看下当前都有哪些查询在运行(横版查看):

[yejr@imysql.com:~ ]# iotop
Total DISK READ: 60.38 M/s | Total DISK WRITE: 640.34 K/s
TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND
16397 be/4 mysql 8.92 M/s 0.00 B/s 0.00 % 94.77 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320
7295 be/4 mysql 10.98 M/s 0.00 B/s 0.00 % 93.59 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320
14295 be/4 mysql 10.50 M/s 0.00 B/s 0.00 % 93.57 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320
14288 be/4 mysql 14.30 M/s 0.00 B/s 0.00 % 91.86 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320
14292 be/4 mysql 14.37 M/s 0.00 B/s 0.00 % 91.23 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320

可以看到有不少慢查询还未完成,从slow query log中也能发现,这类SQL发生的频率很高。

这是一个非常低效的SQL写法,导致需要对整个主键进行扫描,但实际上只需要取得一个最大值而已,从slow query log中可看到:

[yejr@imysql.com(db)]> mysqladmin pr|grep -v Sleep
+----+----+----------+----+-------+-----+--------------+-----------------------------------------------------------------------------------------------+
| Id |User| Host | db |Command|Time | State | Info |
+----+----+----------+----+-------+-----+--------------+-----------------------------------------------------------------------------------------------+
| 25 | x | 10.x:8519 | db | Query | 68 | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>404612 order by Fvideoid) t1 |
| 26 | x | 10.x:8520 | db | Query | 65 | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>484915 order by Fvideoid) t1 |
| 28 | x | 10.x:8522 | db | Query | 130 | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>404641 order by Fvideoid) t1 |
| 27 | x | 10.x:8521 | db | Query | 167 | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>324157 order by Fvideoid) t1 |
| 36 | x | 10.x:8727 | db | Query | 174 | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>324346 order by Fvideoid) t1 |
+----+----+----------+----+-------+-----+--------------+-----------------------------------------------------------------------------------------------+

每次都要扫描500多万行数据,却只为读取一个最大值,效率非常低。

经过分析,这个SQL稍做简单改造即可在个位数毫秒级内完成,原先则是需要150-180秒才能完成,提升了N次方。

改造的方法是:对查询结果做一次倒序排序,取得第一条记录即可。而原先的做法是对结果正序排序,取最后一条记录,汗啊。。。

写在最后,小结

在这个例子中,产生瓶颈的原因比较好定位,SQL优化也不难,实际线上环境中,通常有以下几种常见的原因导致负载较高:

  1. 一次请求读写的数据量太大,导致磁盘I/O读写值较大,例如一个SQL里要读取或更新几万行数据甚至更多,这种最好是想办法减少一次读写的数据量;
  2. SQL查询中没有适当的索引可以用来完成条件过滤、排序(ORDER BY)、分组(GROUP BY)、数据聚合(MIN/MAX/COUNT/AVG等),添加索引或者进行SQL改写吧;
  3. 瞬间突发有大量请求,这种一般只要能扛过峰值就好,保险起见还是要适当提高服务器的配置,万一峰值抗不过去就可能发生雪崩效应;
  4. 因为某些定时任务引起的负载升高,比如做数据统计分析和备份,这种对CPU、内存、磁盘I/O消耗都很大,最好放在独立的slave服务器上执行;
  5. 服务器自身的节能策略发现负载较低时会让CPU降频,当发现负载升高时再自动升频,但通常不是那么及时,结果导致CPU性能不足,抗不过突发的请求;
  6. 使用raid卡的时候,通常配备BBU(cache模块的备用电池),早期一般采用锂电池技术,需要定期充放电(DELL服务器90天一次,IBM是30天),我们可以通过监控在下一次充放电的时间前在业务低谷时提前对其进行放电,不过新一代服务器大多采用电容式电池,也就不存在这个问题了。
  7. 文件系统采用ext4甚至ext3,而不是xfs,在高I/O压力时,很可能导致%util已经跑到100%了,但iops却无法再提升,换成xfs一般可获得大幅提升;
  8. 内核的io scheduler策略采用cfq而非deadline或noop,可以在线直接调整,也可获得大幅提升。
            </div>
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
5月前
|
SQL 缓存 关系型数据库
MySQL 慢查询是怎样优化的
本文深入解析了MySQL查询速度变慢的原因及优化策略,涵盖查询缓存、执行流程、SQL优化、执行计划分析(如EXPLAIN)、查询状态查看等内容,帮助开发者快速定位并解决慢查询问题。
213 0
|
3月前
|
缓存 关系型数据库 MySQL
降低MySQL高CPU使用率的优化策略。
通过上述方法不断地迭代改进,在实际操作中需要根据具体场景做出相对合理判断。每一步改进都需谨慎评估其变动可能导致其他方面问题,在做任何变动前建议先在测试环境验证其效果后再部署到生产环境中去。
167 6
|
9月前
|
SQL 关系型数据库 MySQL
MySQL进阶突击系列(07) 她气鼓鼓递来一条SQL | 怎么看执行计划、SQL怎么优化?
在日常研发工作当中,系统性能优化,从大的方面来看主要涉及基础平台优化、业务系统性能优化、数据库优化。面对数据库优化,除了DBA在集群性能、服务器调优需要投入精力,我们研发需要负责业务SQL执行优化。当业务数据量达到一定规模后,SQL执行效率可能就会出现瓶颈,影响系统业务响应。掌握如何判断SQL执行慢、以及如何分析SQL执行计划、优化SQL的技能,在工作中解决SQL性能问题显得非常关键。
|
4月前
|
存储 SQL 关系型数据库
MySQL 核心知识与索引优化全解析
本文系统梳理了 MySQL 的核心知识与索引优化策略。在基础概念部分,阐述了 char 与 varchar 在存储方式和性能上的差异,以及事务的 ACID 特性、并发事务问题及对应的隔离级别(MySQL 默认 REPEATABLE READ)。 索引基础部分,详解了 InnoDB 默认的 B+tree 索引结构(多路平衡树、叶子节点存数据、双向链表支持区间查询),区分了聚簇索引(数据与索引共存,唯一)和二级索引(数据与索引分离,多个),解释了回表查询的概念及优化方法,并分析了 B+tree 作为索引结构的优势(树高低、效率稳、支持区间查询)。 索引优化部分,列出了索引创建的六大原则
121 2
|
4月前
|
存储 SQL 关系型数据库
MySQL 动态分区管理:自动化与优化实践
本文介绍了如何利用 MySQL 的存储过程与事件调度器实现动态分区管理,自动化应对数据增长,提升查询性能与数据管理效率,并详细解析了分区创建、冲突避免及实际应用中的关键注意事项。
173 0
|
11月前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
2275 10
|
6月前
|
存储 SQL 关系型数据库
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
|
8月前
|
存储 关系型数据库 MySQL
MySQL细节优化:关闭大小写敏感功能的方法。
通过这种方法,你就可以成功关闭 MySQL 的大小写敏感功能,让你的数据库操作更加便捷。
637 19
|
9月前
|
关系型数据库 MySQL 数据库
从MySQL优化到脑力健康:技术人与效率的双重提升
聊到效率这个事,大家应该都挺有感触的吧。 不管是技术优化还是个人状态调整,怎么能更快、更省力地完成事情,都是我们每天要琢磨的事。
209 23
|
9月前
|
SQL 关系型数据库 MySQL
基于SQL Server / MySQL进行百万条数据过滤优化方案
对百万级别数据进行高效过滤查询,需要综合使用索引、查询优化、表分区、统计信息和视图等技术手段。通过合理的数据库设计和查询优化,可以显著提升查询性能,确保系统的高效稳定运行。
393 9

推荐镜像

更多